Four-wave mixing (FWM) is one of the well-known nonlinear optical effects (NOE), and it is considered as an adverse impact in fibre optical communication lines. This nonlinear optical effect as a productive one can be used in fibre optical communication systems for various optical processing functions, like wavelength conversion, high-speed time-division multiplexing (TDM), pulse compression, fibre optical parametric amplifiers (FOPA), etc. In most of the fibre optical communication systems, each data transmission channel requires one light source (e.g., laser) as a carrier, which can make these transmission systems expensive. For example, to provide operation of 4-channel dense wavelength-division-multiplexed (DWDM) system four separate lasers at specific operation wavelengths are needed. On the contrary, through the FWM effect, which can be obtained in highly nonlinear optical fibre (HNLF) by using two high-power pump lasers, the generation of new multiple carriers forming the laser array or a multi-wavelength source is possible. Accordingly, within the present research, we investigate the latter approach for FWM light source implementation in DWDM passive optical networks (DWDM-PONs). We analyse up to 16-channel 50 GHz spaced DWDM-PON system with a bitrate of up to 10 Gbit/s per channel, constructed on the basis of two high-power continuous wave (CW) pump lasers. We evaluate the system performance against the number of its channels by changing it from 4 to 16 and in each case find the most optimal HNLF fibre length (for a 4-channel system it is 0.9 km; for an 8-channel system – 1.39 km; and for a 16-channel system – 1.05 km) and laser pump powers (for a 4-channel system it is 20 dBm; for an 8-channel system – 24.1 dBm; and for a 16-channel system – 26.3 dBm). These optimal parameters were found in order to get the highest system performance, respectively, the lowest BER (threshold BER≤10−10), and minimal power fluctuations among FWM generated carriers. The obtained results show that the proposed transmission system can be a promising solution for next-generation high-speed PONs.

Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics