Cite

1. Chuah, L. S., Hassan, Z., & Tneh, S. S. (2009). Zinc oxide nanorods on porous silicon/silicon substrates. Journal of Optoelectronics and Advanced Materials, 11(11), 1637-1640.Search in Google Scholar

2. Lee, Y.M, & Yang, H.W. (2011). Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solidstate dye-sensitized solar cells. Journal of Solid State Chemistry, 184, 615-623.10.1016/j.jssc.2011.01.021Search in Google Scholar

3. Ye, Z.Z., Yang, F., Lu, Y.F., Zhi, M.J., Tang, H.P., & Zhu, L.P. (2007). ZnO nanorods with different morphologies and their field emission properties. Solid State Communications, 142(8), 425-428.10.1016/j.ssc.2007.03.037Search in Google Scholar

4. Yaoa, I.C., Tsengb, T.Y., & Lina, P. (2012). ZnO nanorods grown on polymer substrates as UV photodetectors. Sensors and Actuators, A: Physical, 178, 26-31.10.1016/j.sna.2012.01.045Search in Google Scholar

5. Carotta, M.C., Cervi, A., di Natale, V., Gherardi, S., Giberti, A., Guidi, V., Puzzovio, D., Vendemiati, B., Martinelli, G., Sacerdoti, M., Calestani, D., Zappettini, A., Zhac, M., & Zanotti, L. (2009). ZnO gas sensors: a comparison between nanoparticles and nanotetrapods-based thick films. Sensors and Actuators, B 137, 164-169.10.1016/j.snb.2008.11.007Search in Google Scholar

6. Reyes, P.I., Duan, Z., Lu, Y., Khavulya, D., & Boustany, N. (2013). ZnO nanostructure-modified QCM for dynamic monitoring of cell adhesion and proliferation. Biosens. Bioelectron, 41, 84-9.10.1016/j.bios.2012.07.03923062553Search in Google Scholar

7. Mihailova, I., Gerbreders, V., Tamanis, E., Sledevskis, E., Viter, R., & Sarajevs, P. (2013). Synthesis of ZnO nanoneedles by thermal oxidation of Zn thin films. Journal of Non-Crystalline Solids, 377, 212-216.10.1016/j.jnoncrysol.2013.05.003Search in Google Scholar

8. Ridhuan, N.S., Abdul Razak, K., Lockman, Z., & Abdul Aziz, A. (2012). Structural and morphology of ZnO nanorods synthesized using ZnO seeded growth hydrothermal method and its properties as UV sensing. PLoS ONE 7(11): e50405.Search in Google Scholar

9. Kumar S., Kim, G. H., Sreenivas, K., & Tandon, R. P. (2007). Mechanism of ultraviolet photoconductivity in zinc oxide nanoneedles. J. Phys.: Condens. Matter, 19, 472202.Search in Google Scholar

10. Dwivedi, V.K., Srivastava, P., & Vijaya Prakash, G. (2013). Photoconductivity and surface chemical analysis of ZnO thin films deposited by solution-processing techniques for nano- and micro-structure fabrication. Journal of Semiconductors, 34(3), 033001-5.10.1088/1674-4926/34/3/033001Search in Google Scholar

11. Dutta, M.,& Basak, D. (2009). Multiwalled carbon nanotubes/ZnO nanowires composite structure with enhanced ultraviolet emission and faster ultraviolet response. (2009). Chemical Physics Letters, 480, 253-257.10.1016/j.cplett.2009.09.024Search in Google Scholar

12. Lee, J.S., Saif Islam, M., & Kim, S. (2007). Photoresponses of ZnO nanobridge devices fabricated using a single-step thermal evaporation method. Sens. Actuators B: Chem., 126(1), 73-77. 10.1016/j.snb.2006.10.042Search in Google Scholar

eISSN:
0868-8257
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Physics, Technical and Applied Physics