Acceso abierto

Localized corrosion attack on the galvanised steel pipes of the fire protection system


Cite

Bednar L. Plain galvanised steel drainage pipe durability estimation with a modified california chart. Transportation research record 1989, 1231: p. 70-78.Search in Google Scholar

Su P., Fuller D.B. Corrosion and corrosion mitigation in fire protecting systems. 2014, p. 98.Search in Google Scholar

Piri B. et al. Investigation of failure mechanisms and remaining life prediction of firewater pipelines used in industrial applications. Engineering Failure Analysis, 2021. 124: p. 1-19. https://doi.org/10.1016/j.engfailanal.2021.105301Search in Google Scholar

Bravo P.M. et al. Failure analysis of galvanized iron pipeline accessories of a fire protection system. Engineering Failure Analysis, 2009. 16: p. 669-674. https://doi.org/10.1016/j.engfailanal.2008.02.009Search in Google Scholar

NFPA 13 Standard for the Installation of Sprinkler Systems. 2022Search in Google Scholar

https://blog.qrfs.com/223-fire-sprinkler-system-pipe-material-nfpa-requirements-and-the-pros-and-consof-steel/#:~:text=With%20a%20melting%20point%20that,for%20all%20fire%20protection%20systems. [online,20.3.2023]Search in Google Scholar

https://www.chemicalsupport.co.uk/materials/pvc/ [online 28.11.2023].Search in Google Scholar

Notarianni K.A., Jackson M.A. Comparison of fire sprinkler piping materials. Building and fire research laboratory. National Institute of Standards and Technology. Gaithersburg. 1994Search in Google Scholar

Chovancová M. et al. Základy korózie a povrchovej úpravy materiálov. Slovenská technická univerzita v Bratislave, Fakulta chemickej a potravinárskej technológie. 2010, p. 305. ISBN 978-80-227-3378-6Search in Google Scholar

Schweitzer P.A. Fundamentals of Corrosion: Mechanisms, Causes, and Preventative Methods. 2010, p. 430. ISBN 978-1-4200-6770-5Search in Google Scholar

Bahrami, A. et al. Establishing the root cause of a failure in a firewater pipeline, Engineering Failure Analysis, 2021, 127: p. 1-10, https://doi.org/10.1016/j.engfailanal.2021.105474.Search in Google Scholar

Subramanian CH. Localized pitting corrosion of API 5L grade A pipe used in industrial fire water piping applications. Engineering Failure Analysis, 2018. 92: p. 405-417. https://doi.org/10.1016/j.engfailanal.2018.06.008Search in Google Scholar

Andrianov A. Pitting corrosion of galvanised pipes in hot water supply systems. 2021, https://doi.org/10.1051/e3sconf/202126304035.Search in Google Scholar

https://www.ecscorrosion.com/blog/weld-seam-corrosion-causes-and-management [online,28.4.2023].Search in Google Scholar

Hopkins M. Avoiding corrosion in dry pipe and preaction sprinkler systems. Plumbing systems and design. 2006. p.34-37.Search in Google Scholar

Reiser M. et al. Corrosive synergic effects of acetic acid and atmospheric pollutants on lead and zinc. KOM – Corrosion and Material Protection Journal, 2022, 66: p. 113-125. https://doi.org/10.2478/kom-2022-0015Search in Google Scholar

Prosek T. et al. Application of automated electrical resistance sensors for measurement of corrosion rate of copper, bronze and iron in model indoor atmospheres containingshort-chain volatile carboxylic acids. Corrosion Science, 2014. 87: p. 376-382. https://doi.org/10.1016/j.corsci.2014.06.047Search in Google Scholar

Vojtěch D. Kovové materiály 1. vyd. Vysoká škola chemicko-technologická v Praze, Praha. 2006, p.94-96. ISBN-80-7080-600-1.Search in Google Scholar

eISSN:
1804-1213
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass