Acceso abierto

Corrosive synergic effects of acetic acid and atmospheric pollutants on lead and zinc


Cite

1. Gibson, L.T. and C.M. Watt, Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corrosion Science, 2010. 52(1): p. 172-178. Search in Google Scholar

2. Niklasson, A., L.-G. Johansson, and J.-E. Svensson, The influence of relative humidity and temperature on the acetic acid vapour-induced atmospheric corrosion of lead. Corrosion Science, 2008. 50(11): p. 3031-3037. Search in Google Scholar

3. Pecenová, Z. and M. Kouřil, Protection of historical lead against acetic acid vapour. Koroze a ochrana materialu, 2016. 60(1): p. 28-34. Search in Google Scholar

4. Puglieri, T.S., D.L.A. de Faria, and A. Cavicchioli, Indoor corrosion of Pb: Effect of formaldehyde concentration and relative humidity investigated by Raman microscopy. Vibrational Spectroscopy, 2014. 71: p. 24-29. Search in Google Scholar

5. Qiu, P., D. Persson, and C. Leygraf, Initial Atmospheric Corrosion of Zinc Induced by Carboxylic Acids: A Quantitative In Situ Study. Journal of The Electrochemical Society, 2009. 156(12). Search in Google Scholar

6. Tétreault, J., J. Sirois, and E. Stamatopoulou, Studies of lead corrosion in acetic acid environments. Studies in Conservation, 2013. 43(1): p. 17-32. Search in Google Scholar

7. Kouril, M., et al., Lead Corrosion and Corrosivity Classification in Archives, Museums, and Churches. Materials (Basel), 2022. 15(2). Search in Google Scholar

8. Prosek, T., et al., Application of automated electrical resistance sensors for measurement of corrosion rate of copper, bronze and iron in model indoor atmospheres containing short-chain volatile carboxylic acids. Corrosion Science, 2014. 87: p. 376-382. Search in Google Scholar

9. Graedel, T.E., Corrosion Mechanisms for Zinc Exposed to the Atmosphere. J. Electrochem. Soc, 1989. 136: p. 193C. Search in Google Scholar

10. S. Oesch, M.F., Environmental effects on materials: The effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminium. A short literature survey and results of laboratory exposures. Corrosion Science, 1997. 39(9): p. 1505-1530. Search in Google Scholar

11. Strandberg, H., L.G. Johansson, and O. Lindqvist, The Atmospheric corrosion of statue bronzes exposed to SO2 and NO2. Materials and Corrosion/Werkstoffe und Korrosion, 1997. 48(11): p. 721-730. Search in Google Scholar

12. Lindström, R., The Atmospheric Corrosion of Zinc in the Presence of NaCl. J. Electrochem. Soc, 2000. 147(1751). Search in Google Scholar

13. García-Segura, A., et al., Influence of gaseous pollutants and their synergistic effects on the aging of reflector materials for concentrating solar thermal technologies. Solar Energy Materials and Solar Cells, 2019. 200. Search in Google Scholar

14. Vera, R., D. Delgado, and B.M. Rosales, Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy. Corrosion Science, 2006. 48(10): p. 2882-2900. Search in Google Scholar

15. Kouril, M., et al., Corrosion monitoring in archives by the electrical resistance technique. Journal of Cultural Heritage, 2014. 15(2): p. 99-103. Search in Google Scholar

eISSN:
1804-1213
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Industrial Chemistry, Chemical Engineering, Materials Sciences, Ceramics and Glass