1. bookVolumen 62 (2018): Edición 4 (December 2018)
Detalles de la revista
License
Formato
Revista
eISSN
1804-1213
Primera edición
03 Apr 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Evaluation of mechanical properties of gas pipeline DN 500 after more than 40 years of its operation

Publicado en línea: 25 Jan 2019
Volumen & Edición: Volumen 62 (2018) - Edición 4 (December 2018)
Páginas: 115 - 120
Detalles de la revista
License
Formato
Revista
eISSN
1804-1213
Primera edición
03 Apr 2012
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. Vianello, CH., Machio, G. Risk Analysis of Natural Gas Pipeline: Case Study of a Generic Pipeline [online]. Available on: http://folk.ntnu.no/skoge/prost/proceedings/pres2011-and-cheap10/ICheaP10/373Vianello.pdfSearch in Google Scholar

2. Brito, A.J., de Almedia, A.T., Mota, C. A multicriteria model for risk sorting of natural gas pipelines based on ELECTRE TRI integrating Utility Theory, European Journal of Operational Research (200), 2010, 812-21.10.1016/j.ejor.2009.01.016Search in Google Scholar

3. Kaduková, J., Marcinčáková, R., Škvareková, E., Mikloš, V. Evaluation of the risk of biocorrosion on a transit gas line passing through Slovakia. Koroze a ochrana materiálů (57), 2013, 69–74.10.2478/kom-2013-0007Search in Google Scholar

4. Perumal, K.L. Corrosion Risk Analysis, Risk based Inspection and a Case Study Concerning a Condensate Pipeline, Procedia Engineering (86) 2014, 597–605.10.1016/j.proeng.2014.11.085Search in Google Scholar

5. Onyechi, P. C., Obuka, N. S. P., Agbo, C.O., Igwegbe, Ch. A. Monitoring and evaluation of cathodic protection performance for oil and gas pipelines: A Nigeria situation, International Journal of Advanced Scientific and Technical Research (1), 2014, 47–65.Search in Google Scholar

6. Cervová, J., Hagarová, M. The Effect of Soil Environment on the Corrosion of Pipeline, Acta Metallurgica Slovaca (21) 2015, 102–110.10.12776/ams.v21i2.566Search in Google Scholar

7. Cicek, V. Cathodic Protection Industrial Solutions for Protecting Against Corrosion, 2013, John Wiley & Sons., New Jersey.10.1002/9781118737880Search in Google Scholar

8. Hagarová, M., Cervová, J., Jaš, F. selected types of corrosion degradation of pipelines. Koroze a ochrana materiálů (59), 2015, 30-36.10.1515/kom-2015-0010Search in Google Scholar

9. Belilty, G. Technical tools to increase the efficiency of underground gas storage facilities and the economic results of their application, Slovgas (1) 2004, 19–22Search in Google Scholar

10. Nali, K. Corrosion and its mitigation in the oil and gas industry, Process plant equipment Operation, Control, and Reliability, 2012.10.1002/9781118162569.app6Search in Google Scholar

11. Cole, I.S., Marney, D. The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils. Corrosion Science (56) 2012, 5–16.10.1016/j.corsci.2011.12.001Search in Google Scholar

12. Godefroid, L.B., Candido, L.C., Toffolo, R.V., Barbosa, L.H. Microstructure and Mechanical Properties of Two Api Steels for Iron Ore Pipelines, Materials Research (17) 2014, 114–120.10.1590/S1516-14392014005000068Search in Google Scholar

13. Nykyforchyn, H., Lunarska, E., Tsyrulnyk, O., Nikiforov, K., Gabetta, G. Effect of the long-term service of the gas pipeline on the properties of the ferrite–pearlite steel, Materials and Corrosion (60) 2009, 716–725.10.1002/maco.200805158Search in Google Scholar

14. Vargas, B.A., Albiter, A., Angeles, CH. C., Hallen, J.M. Effect of Artificial Aging Time on the Mechanical Properties of Weldment on API 5L X-52 Line Pipe Steel, Materials Characterization (58) 2007, 721–729.10.1016/j.matchar.2006.11.004Search in Google Scholar

15. Bereiša, M., Žiliukas, A., Leišis, V., Jutas, A., Didžiokas, R. Comparison of pipe internal pressure calculation methods based on design pressure and yield strength, Mechanika (54) 2005, 5–11.Search in Google Scholar

16. Sheng-Zhu Z., Song-Yang, L., Si-Ning, Ch., Zong-Zhi, W., Ru-Jun, W., Ying-Quan, D. Stress analysis on large-diameter buried gas pipelines under catastrophic landslides, Petroleum Science (14) 2017, 579–585.10.1007/s12182-017-0177-ySearch in Google Scholar

17. Yang, Y., Wang, W.Q., Song, M.D. The Measurement of Mechanical Properties of Pipe Steels in Service through Continuous Ball Indentation Test, Procedia Engineering (130) 2015, 1742–1754.10.1016/j.proeng.2015.12.201Search in Google Scholar

18. Hashemi, S.H., Howard, I.C., Yates, J.R., Andrews, R.M. Measurement and Analysis of Impact Test Data for X100 Pipeline Steel, Applied Mechanics and Materials (3-4) 2005, 369–376.10.4028/www.scientific.net/AMM.3-4.369Search in Google Scholar

19. Bodude, M.A., Adeosun, S.O., Ayoola, W.A. Comparative Studies On Mechanical and Corrosion characteristics of API 5LX60 Steel and RST 37-2Steel, Journal of Emerging Trends in Engineering and Applied Sciences (3) 2012, 137–143.Search in Google Scholar

20. Cervová, J. Corrosion processes in steel underground structures, PhD. thesis, 2017.Search in Google Scholar

21. Bernasovský, P. Case studies of steel structure failures, Archives of Foundry Engineering (10) 2010, 365–370.Search in Google Scholar

22. EN ISO 6892-1: 2009: Metallic materials. Tensile testing. Part 1: Method of test at ambient temperatureSearch in Google Scholar

23. EN 10045-1: 1990 Metallic materials. Charpy impact test. Part 1: Test method 24. Skočovský, P. Material Science for the fields of Engineering and EDIS Publishing University of Žilina 2013.Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo