Cite

1. Bianchi M.B., Jerônimo G.T., Pádua S.B., Satake F., Ishikawa M.M., Tavares-Dias M., Martins M.L.: The hematological profile of farmed Sorubim lima: reference intervals, cell morphology and cytochemistry. Vet Arhiv 2014, 84, 677–690.Search in Google Scholar

2. Burrows A.T., Fletcher T.C., Manning M.J.: Haematology of the turbot, (Psetta maxima, L.): ultrastructural, cytochemical and morphological properties of peripheral blood leucocytes. J Appl Ichthyol 2001, 17, 77–84.10.1046/j.1439-0426.2001.00250.xSearch in Google Scholar

3. da Silva W.F., Egami M.I., Santos A.A., Antoniazzi M.M., Silva M., Gutierre R.C., Paiva M.J.R.: Cytochemical, immunocytochemical, and ultrastructural observations on leukocytes and thrombocytes of fat snook (Centropomus parallelus). Fish Shellfish Immunol 2011, 31, 571–577.10.1016/j.fsi.2011.07.01921802518Search in Google Scholar

4. Ferdous F., Scott T.R.: A comparative examination of thrombocyte/platelet immunity. Immunol Letters 2015, 163, 32–39.10.1016/j.imlet.2014.11.01025448707Search in Google Scholar

5. Fink I.R., Ribeiro C.M., Forlenza M., Taverne-Thiele A., Rombout J.H., Savelkoul H.F., Wiegertjes G.F.: Immune-relevant thrombocytes of common carp undergo parasite-induced nitric oxide-mediated apoptosis. Dev Comp Immunol 2015, 50, 146–154.10.1016/j.dci.2015.02.00825681740Search in Google Scholar

6. Glass T.J., Lund T.C., Patrinostro X., Tolar J., Bowman T.V., Zon L.I., Blazar B.R.: Stromal cell-derived factor-1 and hematopoietic cell homing in an adult zebrafish model of hematopoietic cell transplantation. Blood 2011, 118, 766–774.10.1182/blood-2011-01-328476329243821622651Search in Google Scholar

7. Hill D.J., Rowley A.F.: Are integrins involved in the aggregatory and phagocytic behaviour of fish haemostatic cells? J Exp Biol 1998, 201, 599–608.10.1242/jeb.201.4.5999438834Search in Google Scholar

8. Huising M.O., van Schijndel J.E., Kruiswijk C.P., Nabuurs S.B., Savelkoul H.F., Flik G., Verburg-van Kemenade B.M. The presence of multiple and differentially regulated interleukin-12p40 genes in bony fishes signifies an expansion of the vertebrate heterodimeric cytokine family. Mol Immunol 2006, 43, 1519–1533. doi: 10.1016/j.molimm.2005.10.010.10.1016/j.molimm.2005.10.01016460805Search in Google Scholar

9. Jaros J., Korytar T., Huong D.T., Weiss M., Köllner B.: Rainbow trout (Oncorhynchus mykiss) thrombocytes are involved in MHC II dependent antigen presentation. Fish Shellfish Immunol 2013, 34, 1657.10.1016/j.fsi.2013.03.072Search in Google Scholar

10. Katakura F., Katzenback B.A., Belosevic M.: Molecular and functional characterization of erythropoietin receptor of the goldfish (Carassius auratus L.). Dev Comp Immunol 2014, 45, 191–198.10.1016/j.dci.2014.02.01724657210Search in Google Scholar

11. Katakura F., Katzenback B.A., Belosevic M.: Recombinant goldfish thrombopoietin up-regulates expression of genes involved in thrombocyte development and synergizes with kit ligand A to promote progenitor cell proliferation and colony formation. Dev Comp Immunol 2015, 49, 157–169.10.1016/j.dci.2014.11.00125450454Search in Google Scholar

12. Katakura F., Sugie Y., Hayashi K., Nishiya K., Miyamae J., Okano M., Nakanishi T., Moritomo T.: Thrombopoietin (TPO) induces thrombocytic colony formation of kidney cells synergistically with kit ligand A and a non-secretory TPO variant exists in common carp. Dev Comp Immunol 2018, 84, 327–336. doi.org/10.1016/j.dci.2018.03.005.10.1016/j.dci.2018.03.00529522790Open DOISearch in Google Scholar

13. Katzenback B.A., Karpman M., Belosevic M.: Distribution and expression analysis of transcription factors in tissues and progenitor cell populations of the goldfish (Carassius auratus L.) in response to growth factors and pathogens. Mol Immunol 2011, 48, 1224–1235.10.1016/j.molimm.2011.03.00721474183Search in Google Scholar

14. Katzenback B.A., Katakura F., Belosevic M.: Goldfish (Carassius auratus L.) as a model system to study the growth factors, receptors and transcription factors that govern myelopoiesis in fish. Dev Comp Immunol 2016, 58, 68–85.10.1016/j.dci.2015.10.02426546240Search in Google Scholar

15. Kawamoto H., Ikawa T., Masuda K., Wada H., Katsura Y.: A map for lineage restriction of progenitors during hematopoiesis: the essence of the myeloid-based model. Immunol Rev 2010, 238, 23–36.10.1111/j.1600-065X.2010.00959.x20969582Search in Google Scholar

16. Kawamoto H., Katsura Y.: A new paradigm for hematopoietic cell lineages: revision of the classical concept of the myeloidlymphoid dichotomy. Trends Immunol 2009, 30, 193–200.10.1016/j.it.2009.03.00119356980Search in Google Scholar

17. Khandekar G., Kim S., Jagadeeswaran P.: Zebrafish Thrombocytes: Functions and Origins. Adv Hematology 2012, ID 857058, doi.org/10.1155/2012/857058.10.1155/2012/857058338848222778746Search in Google Scholar

18. Kim S., Carrillo M., Radhakrishnan U.P., Jagadeeswaran P.: Role of zebrafish thrombocyte and non-thrombocyte microparticles in hemostasis. Blood Cell Mol Dis 2012, 48, 188–196.10.1016/j.bcmd.2011.12.008646226222306208Search in Google Scholar

19. Kobayashi I., Katakura F., Moritomo T.: Isolation and characterization of hematopoietic stem cells in teleost fish. Dev Comp Immunol 2016, 58, 86–94.10.1016/j.dci.2016.01.00326801099Search in Google Scholar

20. Kobayashi I., Moritomo T., Ototake M., Nakanishi T.: Isolation of side population cells from ginbuna carp (Carassius auratus langsdorfii) kidney hematopoietic tissues. Dev Comp Immunol 2007, 31, 696–707.10.1016/j.dci.2006.10.00317129605Search in Google Scholar

21. Kobayashi I., Saito K., Moritomo T., Araki K., Takizawa F., Nakanishi T.: Characterization and localization of side population (SP) cells in zebrafish kidney hematopoietic tissue. Blood 2008, 111, 1131–1137.10.1182/blood-2007-08-10429917932252Search in Google Scholar

22. Köllner B., Fischer U., Rombout J.H.W.M., Taverne-Thiele J.J., Hansen J.D.: Potential involvement of rainbow trout thrombocytes in immune functions: a study using a panel of monoclonal antibodies and RT-PCR. Dev Comp Immunol 2004, 28, 1049–1062.10.1016/j.dci.2004.03.00515236934Search in Google Scholar

23. Lin H.F., Traver D., Zhu H., Dooley K., Paw B.H., Zon L.I., Handinet R.I.: Analysis of thrombocyte development in CD41-GFP transgenic zebrafish. Blood 2005, 106, 3803–3810. doi:10.1182/blood-2005-01-0179.10.1182/blood-2005-01-0179189509416099879Open DOISearch in Google Scholar

24. Nagasawa T., Nakayasu C., Rieger A.M., Barreda D.R., Somamoto T., Nakao M.: Phagocytosis by thrombocytes is a conserved innate immune mechanism in lower vertebrates. Front Immunol 2014, 5, 445. doi.org/10.3389/fimmu.2014.00445.10.3389/fimmu.2014.00445416531925278940Open DOISearch in Google Scholar

25. Nagasawa T., Somamoto T., Nakao M.: Carp thrombocyte phagocytosis requires activation factors secreted from other leukocytes. Dev Comp Immunol 2015, 52, 107–111.10.1016/j.dci.2015.05.00225978929Search in Google Scholar

26. Ning Y.J., Lu X.J., Chen J.: Molecular characterization of a tissue factor gene from ayu: a pro-inflammatory mediator via regulating monocytes/macrophages. Dev Comp Immunol 2018, 84, 37–47.10.1016/j.dci.2018.02.00229408399Search in Google Scholar

27. Nombela I., Puente-Marin S., Chico V., Villena A.J., Carracedo B., Ciordia S., Mena M.C., Mercado L., Perez L., Coll J., Estepa A.: Identification of diverse defense mechanisms in trout red blood cells in response to VHSV halted viral replication. F1000 Research, 2017, 6, 1958. doi: 10.12688/f1000research.12985.1.10.12688/f1000research.12985.1Search in Google Scholar

28. Ortega-Villaizan M.D.M.: The role of red blood cells in the immune response of fish. https://www.frontiersin.org/research-topics/6573/the-role-of-red-blood-cells-in-the-immune-response-of-fish.Search in Google Scholar

29. Passer B.J., Chen C.H., Miller N.W., Cooper M.D.: Catfish thrombocytes express an integrin-like CD41/CD61 complex. Exp Cell Res 1997, 234, 347–353.10.1006/excr.1997.36119260904Search in Google Scholar

30. Pietretti D., Spaink H.P., Falco A., Forlenza M., Wiegertjes G.F.: Accessory molecules for Toll-like receptors in Teleost fish. Identification of TLR4 interactor with leucine-rich repeats (TRIL). Mol Immunol 2013, 56, 745–756.10.1016/j.molimm.2013.07.01223958499Search in Google Scholar

31. Prasad G., Charles S.: Haematology and leucocyte enzyme cytochemistry of a threatened yellow catfish Horabagrus brachysoma (Gunther 1864). Fish Physiol Biochem 2010, 36, 435–443.10.1007/s10695-009-9313-y19306068Search in Google Scholar

32. Rombout J.H.W.M., Koumans-van Diepen J.C.E., Emmer P.M., Taverne-Thiele J.J., Taverne N.: Characterization of carp thrombocytes with specific monoclonal antibodies. J Fish Biol 1996, 49, 521–531.10.1111/j.1095-8649.1996.tb00047.xSearch in Google Scholar

33. Rough K.M., Nowak B.F., Reuter R.E.: Haematology and leukocyte morphology of wild caught Thunnus maccoyii. J Fish Biol 2005, 66, 1649–1659.10.1111/j.0022-1112.2005.00710.xSearch in Google Scholar

34. Shigdar S., Cook D., Jones P., Harford A., Ward A.C.: Blood cells of Murray cod Maccullochella peelii peelii (Mitchell). J Fish Biol 2007, 70, 973–980.10.1111/j.1095-8649.2007.01351.xSearch in Google Scholar

35. Shigdar S., Harford A., Ward A.C.: Cytochemical characterisation of the leucocytes and thrombocytes from Murray cod (Maccullochella peelii peelii, Mitchell). Fish Shellfish Immunol 2009, 26, 731–736.10.1016/j.fsi.2009.03.01019332132Search in Google Scholar

36. Stosik M.: Morphology and phagocytic activity of carp's thrombocytes, Cyprinus carpio L. Med Weter 1993, 49, 184–186.Search in Google Scholar

37. Stosik M.: Thrombocyte number and their phagocytic activity in carp (Cyprinus carpio L.) of different age. Med Weter 1995, 51, 621–623.Search in Google Scholar

38. Stosik M., Deptuła W.: Thrombocytes of fish. Med Weter 1992, 48, 556–558.Search in Google Scholar

39. Stosik M., Deptuła W.: Studies on selected protective functions of thrombocytes and neutrophilic granulocytes in healthy and sick carp. Pol J Vet Sci 2000, 3, 219–225.Search in Google Scholar

40. Stosik M., Deptuła W., Trávniček M.: Studies on number and on ingesting ability of thrombocytes in sick carps (Cyprinus carpio L.). Vet Med-Czech 2001, 46, 12–16.10.17221/7845-VETMEDSearch in Google Scholar

41. Stosik M., Deptuła W., Trávniček M., Baldy-Chudzik K.: Phagocytic and bactericidal activity of blood thrombocytes in carps (Cyprinus carpio). Vet Med-Czech 2002, 47, 21–25.10.17221/5798-VETMEDSearch in Google Scholar

42. Svoboda O., Stachura D.L., Machoňová O., Pajer P., Brynda J., Zon L.I., Traver D., Bartůněk P.: Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood 2014, 124, 220–228.10.1182/blood-2014-03-564682409368124869937Search in Google Scholar

43. Tavares-Dias M., Moraes F.R.: Morphological, cytochemical, and ultrastructural study of thrombocytes and leukocytes in neotropical fish, Brycon orbignyanus Valenciannes, 1850 (Characidae, Bryconinae). J Submicrosc Cytol Pathol 2006, 38, 209–215.Search in Google Scholar

44. Tavares-Dias M., Ono E.A., Pilarski F., Moraes F.R.: Can thrombocytes participate in the removal of cellular debris in the blood circulation of teleost fish? A cytochemical study and ultrastructural analysis. J Appl Ichthyol 2007, 23, 709–712.10.1111/j.1439-0426.2007.00850.xSearch in Google Scholar

45. Ueda I.K., Egami M.I., Sasso W.S., Matushima E.R.: Cytochemical aspects of the peripheral blood cells of Oreochromis (Tilapia niloticus. Linnaeus, 1758) (Cichlidae, Teleostei): Part II. Brazilian J Vet Res Animal Sci 2001, 38, 273–277.10.1590/S1413-95962001000600005Search in Google Scholar

46. Zimmerman L.M., Vogel L.A., Edwards K.A., Bowden R.M.: Phagocytic B cells in a reptile. Biol Lett 2010, 6, 270–273. doi:10.1098/rsbl.2009.0692.10.1098/rsbl.2009.0692286506619846448Open DOISearch in Google Scholar

eISSN:
2450-8608
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Molecular Biology, Microbiology and Virology, other, Medicine, Veterinary Medicine