Generalised Regression Estimation Given Imperfectly Matched Auxiliary Data
13 mar 2021
Acerca de este artículo
Publicado en línea: 13 mar 2021
Páginas: 239 - 255
Recibido: 01 may 2020
Aceptado: 01 nov 2020
DOI: https://doi.org/10.2478/jos-2021-0010
Palabras clave
© 2020 Li-Chun Zhang, published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Generalised regression estimation allows one to make use of available auxiliary information in survey sampling. We develop three types of generalised regression estimator when the auxiliary data cannot be matched perfectly to the sample units, so that the standard estimator is inapplicable. The inference remains design-based. Consistency of the proposed estimators is either given by construction or else can be tested given the observed sample and links. Mean square errors can be estimated. A simulation study is used to explore the potentials of the proposed estimators.