[
Aalifar M., Aliniaeifard S., Arab M., Zare Mehrjerdi M., Dianati Daylami S., Serek M. et al. 2020. Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system. Frontiers in Plant Science 11; 511; 13 p. DOI: 10.3389/fpls.2020.00511.
]Search in Google Scholar
[
Alhasan A.S. 2020. Effect of different NPK nano-fertilizer rates on agronomic traits, essential oil, and seed yield of basil (Ocimum basilicum L. cv Dolly) grown under field conditions. Plant Archives 20(Suppl. 2): 2959–2962.
]Search in Google Scholar
[
Aliniaeifard S., Malcolm Matamoros P., van Meeteren U. 2014. Stomatal malfunctioning under low VPD conditions: induced by alterations in stomatal morphology and leaf anatomy or in the ABA signaling? Physiologia Plantarum 152(4): 688–699. DOI: 10.1111/ppl.12216.
]Search in Google Scholar
[
Aliniaeifard S., van Meeteren U. 2016. Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity. Scientia Horticulturae 205: 84–89. DOI: 10.1016/j.scienta.2016.04.025.
]Search in Google Scholar
[
Araújo W.L., Fernie A.R., Nunes-Nesi A. 2011. Control of stomatal aperture: A renaissance of the old guard. Plant Signaling and Behavior 6(9): 1305–1311. DOI: 10.4161/psb.6.9.16425.
]Search in Google Scholar
[
Bantis F., Smirnakou S., Ouzounis T., Koukounaras A., Ntagkas N., Radoglou K. 2018. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Scientia Horticulturae 235: 437–451. DOI: 10.1016/j.scienta.2018.02.058.
]Search in Google Scholar
[
Battle M.W., Jones M.A. 2020. Cryptochromes integrate green light signals into the circadian system. Plant, Cell and Environment 43(1): 16–27. DOI: 10.1111/pce.13643.
]Search in Google Scholar
[
Chen F., Zhang M., Yang C.-h. 2020. Application of ultra-sound technology in processing of ready-to-eat fresh food: A review. Ultrasonics Sonochemistry 63; 104953; 11 p. DOI: 10.1016/j.ultsonch.2019.104953.
]Search in Google Scholar
[
Davies W.J., Kozlowski T.T. 1975. Stomatal responses to changes in light intensity as influenced by plant water stress. Forest Science 21(2): 129–133. DOI: 10.1093/forestscience/21.2.129.
]Search in Google Scholar
[
Doi M., Kitagawa Y., Shimazaki K.-i. 2015. Stomatal blue light response is present in early vascular plants. Plant Physiology 169: 1205–1213. DOI: 10.1104/pp.15.00134.
]Search in Google Scholar
[
Drake P.L., Froend R.H., Franks P.J. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64(2): 495–505. DOI: 10.1093/jxb/ers347.
]Search in Google Scholar
[
Driesen E., Van den Ende W., De Proft M., Saeys W. 2020. Influence of environmental factors light, CO2, temperature, and relative humidity on stomatal opening and development: A review. Agronomy 10(12); 1975; 28 p. DOI: 10.3390/agronomy10121975.
]Search in Google Scholar
[
Fanourakis D., Giday H., Hyldgaard B., Bouranis D., Körner O., Ottosen C.-O. 2019. Low air humidity during cultivation promotes stomatal closure ability in rose. European Journal of Horticultural Science 84(4): 245–252. DOI: 10.17660/ejhs.2019/84.4.7.
]Search in Google Scholar
[
Folta K.M., Maruhnich S.A. 2007. Green light: a signal to slow down or stop. Journal of Experimental Botany 58(12): 3099–3111. DOI: 10.1093/jxb/erm130.
]Search in Google Scholar
[
Frechilla S., Talbott L.D., Bogomolni R.A., Zeiger E. 2000. Reversal of blue light-stimulated stomatal opening by green light. Plant and Cell Physiology 41(2): 171–176. DOI: 10.1093/pcp/41.2.171.
]Search in Google Scholar
[
Ghorbanzadeh P., Aliniaeifard S., Esmaeili M., Mashal M., Azadegan B., Seif M. 2021. Dependency of growth, water use efficiency, chlorophyll fluorescence, and stomatal characteristics of lettuce plants to light intensity. Journal of Plant Growth Regulation 40(5): 2191–2207. DOI: 10.1007/s00344-020-10269-z.
]Search in Google Scholar
[
Golovatskaya I.F., Karnachuk R.A. 2015. Role of green light in physiological activity of plants. Russian Journal of Plant Physiology 62(6): 727–740. DOI: 10.1134/s1021443715060084.
]Search in Google Scholar
[
Hattori T., Sonobe K., Inanaga S., An P., Tsuji W., Araki H. et al. 2007. Short term stomatal responses to light intensity changes and osmotic stress in sorghum seedlings raised with and without silicon. Environmental and Experimental Botany 60(2): 177–182. DOI: 10.1134/s1021443715060084.
]Search in Google Scholar
[
Hoagland D.R., Arnon D.I. 1950. The water-culture method for growing plants without soil. Circular 347, California Agricultural Experiment Station, University of California, USA, 32 p.
]Search in Google Scholar
[
Izzo L.G., Mickens M.A., Aronne G., Gómez C. 2021. Spectral effects of blue and red light on growth, anatomy, and physiology of lettuce. Physiologia Plantarum 172(4): 2191–2202. DOI: 10.1111/ppl.13395.
]Search in Google Scholar
[
Kim H.-H., Goins G.D., Wheeler R.M., Sager J.C. 2004. Stomatal conductance of lettuce grown under or exposed to different light qualities. Annals of Botany 94(5): 691–697. DOI: 10.1093/aob/mch192.
]Search in Google Scholar
[
Kochetova G.V., Avercheva O.V., Bassarskaya E.M., Zhigalova T.V. 2022. Light quality as a driver of photo-synthetic apparatus development. Biophysical Reviews 14(4): 779–803. DOI: 10.1007/s12551-022-00985-z.
]Search in Google Scholar
[
Kusuma P., Pattison P.M., Bugbee B. 2020. From physics to fixtures to food: current and potential LED efficacy. Horticulture Research 7; 56; 9 p. DOI: 10.1038/s41438-020-0283-7.
]Search in Google Scholar
[
Larsen D.H., Woltering E.J., Nicole C.C.S., Marcelis L.F.M. 2020. Response of basil growth and morphology to light intensity and spectrum in a vertical farm. Frontiers in Plant Science 11; 597906; 16 p. DOI: 10.3389/fpls.2020.597906.
]Search in Google Scholar
[
Lastochkina O., Aliniaeifard S., SeifiKalhor M., Bosacchi M., Maslennikova D., Lubyanova A. 2022. Novel approaches for sustainable horticultural crop production: Advances and prospects. Horticulturae 8(10); 910; 45 p. DOI: 10.3390/horticulturae8100910.
]Search in Google Scholar
[
Lee S.-H., Tewari R.K., Hahn E.-J., Paek K.-Y. 2007. Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania somnifera (L.) Dunal. plantlets. Plant Cell, Tissue and Organ Culture 90(2): 141–151. DOI: 10.1007/s11240-006-9191-2.
]Search in Google Scholar
[
Lee Y.J., Ha J.Y., Oh J.E., Cho M.S. 2014. The effect of LED irradiation on the quality of cabbage stored at a low temperature. Food Science and Biotechnology 23(4): 1087–1093. DOI: 10.1007/s10068-014-0149-6.
]Search in Google Scholar
[
Loi M., Liuzzi V.C., Fanelli F., De Leonardis S., Creanza T.M., Ancona N. et al. 2019. Effect of different light-emitting diode (LED) irradiation on the shelf life and phytonutrient content of broccoli (Brassica oleracea L. var. italica). Food Chemistry 283: 206–214. DOI: 10.1016/j.foodchem.2019.01.021.
]Search in Google Scholar
[
Mao J., Zhang Y.-C., Sang Y., Li Q.-H., Yang H.-Q. 2005. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proceedings of the National Academy of Sciences 102(34): 12270–12275. DOI: 10.1073/pnas.0501011102.
]Search in Google Scholar
[
Massa G.D., Kim H.-H., Wheeler R.M., Mitchell C.A. 2008. Plant productivity in response to LED lighting. HortScience 43(7): 1951–1956. DOI: 10.21273/hortsci.43.7.1951.
]Search in Google Scholar
[
Matthews J.S.A., Vialet-Chabrand S., Lawson T. 2020. Role of blue and red light in stomatal dynamic behaviour. Journal of Experimental Botany 71(7): 2253–2269. DOI: 10.1093/jxb/erz563.
]Search in Google Scholar
[
McAusland L., Vialet‐Chabrand S., Davey P., Baker N.R., Brendel O., Lawson T. 2016. Effects of kinetics of light‐induced stomatal responses on photosynthesis and water‐use efficiency. New Phytologist 211(4): 1209–1220. DOI: 10.1111/nph.14000.
]Search in Google Scholar
[
Muneer S., Kim E.J., Park J.S., Lee J.H. 2014. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). International Journal of Molecular Sciences 15(3): 4657–4670. DOI: 10.3390/ijms15034657.
]Search in Google Scholar
[
Nunes C.N., Emond J.-P. 2007. Relationship between weight loss and visual quality of fruits and vegetables. Proceedings of the Florida State Horticultural Society 120: 235–245.
]Search in Google Scholar
[
O’Carrigan A., Hinde E., Lu N., Xu X.-Q., Duan H., Huang G. et al. 2014. Effects of light irradiance on stomatal regulation and growth of tomato. Environmental and Experimental Botany 98: 65–73. DOI: 10.1016/j.envexpbot.2013.10.007.
]Search in Google Scholar
[
Paradiso R., Proietti S. 2022. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. Journal of Plant Growth Regulation 41(2): 742–780. DOI: 10.1007/s00344-021-10337-y.
]Search in Google Scholar
[
Pemadasa M.A. 1979. Movements of abaxial and adaxial stomata. New Phytologist 82(1): 69–80. DOI: 10.1111/j.1469-8137.1979.tb07561.x.
]Search in Google Scholar
[
Pennisi G., Orsini F., Castillejo N., Gómez P.A., Crepaldi A., Fernández J.A. et al.2021. Spectral composition from led lighting during storage affects nutraceuticals and safety attributes of fresh-cut red chard (Beta vulgaris) and rocket (Diplotaxis tenuifolia) leaves. Postharvest Biology and Technology 175; 111500; 13 p. DOI: 10.1016/j.postharvbio.2021.111500.
]Search in Google Scholar
[
Razzak M.A., Asaduzzaman M., Tanaka H., Asao T. 2022. Effects of supplementing green light to red and blue light on the growth and yield of lettuce in plant factories. Scientia Horticulturae 305; 111429; 11 p. DOI: 10.1016/j.scienta.2022.111429.
]Search in Google Scholar
[
Rufyikiri A.-S., Addo P.W., Wu B.-S., MacPherson S., Orsat V., Lefsrud M. 2024. The use of LEDs for the stomatal response, light compensation points, and storage of spinach and kale. Journal of Photochemistry and Photobiology B: Biology 257; 112959; 10 p. DOI: 10.1016/j.jphotobiol.2024.112959.
]Search in Google Scholar
[
Sabry R.M., Elsayed A.A.A., Khattab M.E., Ahmed S.S. 2019. Performance of eight cultivars of sweet basil grown under Egyptian conditions. Middle East Journal of Agriculture Research 8(4): 1281–1289. DOI: 10.36632/mejar/2019.8.4.30.
]Search in Google Scholar
[
Sakhonwasee S., Tummachai K., Nimnoy N. 2017. Influences of LED light quality and intensity on stomatal behavior of three petunia cultivars grown in a semi-closed system. Environmental Control in Biology 55(2): 93–103. DOI: 10.2525/ecb.55.93.
]Search in Google Scholar
[
Salehinia S., Didaran F., Aliniaeifard S., Zohrabi S., Mac-Pherson S., Lefsrud M. 2024. Green light enhances the phytochemical preservation of lettuce during post-harvest cold storage. PLoS ONE 19(11); e0311100; 22 p. DOI: 10.1371/journal.pone.0311100.
]Search in Google Scholar
[
Savvides A., Fanourakis D., van Ieperen W. 2012. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves. Journal of Experimental Botany 63(3): 1135–1143. DOI: 10.1093/jxb/err348.
]Search in Google Scholar
[
Seif M., Aliniaeifard S., Arab M., Mehrjerdi M.Z., Sho-mali A., Fanourakis D. et al. 2021. Monochromatic red light during plant growth decreases the size and improves the functionality of stomata in chrysanthemum. Functional Plant Biology 48(5): 515–528. DOI: 10.1071/fp20280.
]Search in Google Scholar
[
Sharkey T.D., Raschke K. 1981. Effect of light quality on stomatal opening in leaves of Xanthium strumarium L. Plant Physiology 68(5): 1170–1174. DOI: 10.1104/pp.68.5.1170.
]Search in Google Scholar
[
Shi M., Gu J., Wu H., Rauf A., Emran T.B., Khan Z. et al. 2022. Phytochemicals, nutrition, metabolism, bioavailability, and health benefits in lettuce – A comprehensive review. Antioxidants 11(6); 1158; 23 p. DOI: 10.3390/antiox11061158.
]Search in Google Scholar
[
Shimazaki K.-i., Doi M., Assmann S.M., Kinoshita T. 2007. Light regulation of stomatal movement. Annual Review of Plant Biology 58: 219–247. DOI: 10.1146/annurev.arplant.57.032905.105434.
]Search in Google Scholar
[
Singh A., Jha S.K., Bagri J., Pandey G.K. 2015. ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis. PLoS ONE 10(4); e0125168; 24 p. DOI: 10.1371/journal.pone.0125168.
]Search in Google Scholar
[
Srivastava L.M. 2002. Plant Growth and Development: Hormones and Environment. Elsevier, 772 p.
]Search in Google Scholar
[
Sun J., Nishio J.N., Vogelmann T.C. 1998. Green light drives CO2 fixation deep within leaves. Plant and Cell Physiology 39(10): 1020–1026. DOI: 10.1093/oxfordjournals.pcp.a029298.
]Search in Google Scholar
[
Tabbert J.M. 2023. Effects of broad-bandwidth LED light spectra on the development and quality of medicinal and aromatic plants including thyme (Thymus vulgaris L.), peppermint (Mentha × piperita L.) and basil (Ocimum basilicum L.). PhD thesis, Freie Universität Berlin, Germany, 251 p.
]Search in Google Scholar
[
Talbott L.D., Nikolova G., Ortiz A., Shmayevich I., Zeiger E. 2002. Green light reversal of blue‐light‐stimulated stomatal opening is found in a diversity of plant species. American Journal of Botany 89(2): 366–368. DOI: 10.3732/ajb.89.2.366.
]Search in Google Scholar
[
Thoma F., Somborn-Schulz A., Schlehuber D., Keuter V., Deerberg G. 2020. Effects of light on secondary metabolites in selected leafy greens: A review. Frontiers in Plant Science 11; 497; 15 p. DOI: 10.3389/fpls.2020.00497.
]Search in Google Scholar
[
Umeohia U.E., Olapade A.A. 2024. Quality attributes, physiology, and postharvest technologies of tomatoes (Lycopersicum esculentum) – A review. American Journal of Food Science and Technology 12(2): 42–64. DOI: 10.12691/ajfst-12-2-1.
]Search in Google Scholar
[
van Ieperen W. 2012. Plant morphological and developmental responses to light quality in a horticultural context. Acta Horticulturae 956: 131–139. DOI: 10.17660/actahortic.2012.956.12.
]Search in Google Scholar
[
Wang Y., Noguchi K., Terashima I. 2008. Distinct light responses of the adaxial and abaxial stomata in intact leaves of Helianthus annuus L. Plant, Cell and Environment 31(9): 1307–1316. DOI: 10.1111/j.1365-3040.2008.01843.x.
]Search in Google Scholar
[
Wei H., Kong D., Yang J., Wang H. 2020. Light regulation of stomatal development and patterning: Shifting the paradigm from Arabidopsis to grasses. Plant Communications 1(2); 100030; 9 p. DOI: 10.1016/j.xplc.2020.100030.
]Search in Google Scholar
[
Wolf A., Anderegg W.R., Pacala S.W. 2016. Optimal stomatal behavior with competition for water and risk of hydraulic impairment. Proceedings of the National Academy of Sciences 113(46): E7222–E7230. DOI: 10.1073/pnas.1615144113.
]Search in Google Scholar
[
Yang J., Li C., Kong D., Guo F., Wei H. 2020. Light-mediated signaling and metabolic changes coordinate stomatal opening and closure. Frontiers in Plant Science 11; 601478; 12 p. DOI: 10.3389/fpls.2020.601478.
]Search in Google Scholar
[
Zeiger E., Field C. 1982. Photocontrol of the functional coupling between photosynthesis and stomatal conductance in the intact leaf: Blue light and PAR-dependent photosystems in guard cells. Plant Physiology 70(2): 370–375. DOI: 10.1104/pp.70.2.370.
]Search in Google Scholar