Acceso abierto

Site-Directed Mutagenesis – A Chance to Meet Environmental Challenges and Provide Healthy Food for People or an Unacceptable Hazard to Humans, Animals, and the Environment. Consequences of the European Court of Justice Judgment in Case C-528/16


Cite

Adaskaveg J.A., Silva C.J., Huang P., Blanco-Ulate B. 2021. Single and double mutations in tomato ripening transcription factors have distinct effects on fruit development and quality traits. Frontiers in Plant Science 12; 647035; 17 p. DOI: 10.3389/fpls.2021.647035. AdaskavegJ.A. SilvaC.J. HuangP. Blanco-UlateB. 2021 Single and double mutations in tomato ripening transcription factors have distinct effects on fruit development and quality traits Frontiers in Plant Science 12 647035 17 p. 10.3389/fpls.2021.647035 811073033986762 Open DOISearch in Google Scholar

Aramrak A., Lawrence N.C., Demacon V.L., Carter A.H., Kidwell K.K., Burke I.C., Steber C. M. 2018. Isolation of mutations conferring increased glyphosate resistance in spring wheat. Crop Science 58(1): 84–97. DOI: 10.2135/cropsci2016.10.0861. AramrakA. LawrenceN.C. DemaconV.L. CarterA.H. KidwellK.K. BurkeI.C. SteberC. M. 2018 Isolation of mutations conferring increased glyphosate resistance in spring wheat Crop Science 58 1 84 97 10.2135/cropsci2016.10.0861 Open DOISearch in Google Scholar

Argast G.M., Stephens K.M., Emond M.J., Monnat R.J. Jr. 1998. I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment. Journal of Molecular Biology 280(3): 345–353. DOI: 10.1006/jmbi.1998.1886. ArgastG.M. StephensK.M. EmondM.J. MonnatR.J.Jr. 1998 I-PpoI and I-CreI homing site sequence degeneracy determined by random mutagenesis and sequential in vitro enrichment Journal of Molecular Biology 280 3 345 353 10.1006/jmbi.1998.1886 9665841 Open DOISearch in Google Scholar

Barrangou R. 2015. The roles of CRISPR–Cas systems in adaptive immunity and beyond. Current Opinion in Immunology 32: 36–41. DOI: 10.1016/j.coi.2014.12.008. BarrangouR. 2015 The roles of CRISPR–Cas systems in adaptive immunity and beyond Current Opinion in Immunology 32 36 41 10.1016/j.coi.2014.12.008 25574773 Open DOISearch in Google Scholar

Barreiro-Hurle J., Bogonos M., Himics M., Hristov J., Pérez-Domínguez I., Sahoo A. et al. 2021. Modelling environmental and climate ambition in the agricultural sector with the CAPRI model. JCR Technical Report. EUR 30317 EN, Publications Office of the European Union, Luxembourg. DOI: 10.2760/98160. Barreiro-HurleJ. BogonosM. HimicsM. HristovJ. Pérez-DomínguezI. SahooA. 2021 Modelling environmental and climate ambition in the agricultural sector with the CAPRI model JCR Technical Report. EUR 30317 EN, Publications Office of the European Union Luxembourg 10.2760/98160 Open DOISearch in Google Scholar

Beckman J., Ivanic M., Jelliffe J.L., Baquedano F.G., Scott S.G. 2020. Economic and food security impacts of agricultural input reduction under the European Union Green Deal's Farm to Fork and Bio-diversity Strategies. EB-30, U.S. Department of Agriculture, Economic Research Service, 52 p. https://www.ers.usda.gov/webdocs/publications/99741/eb-30.pdf?v=4469.8 BeckmanJ. IvanicM. JelliffeJ.L. BaquedanoF.G. ScottS.G. 2020 Economic and food security impacts of agricultural input reduction under the European Union Green Deal's Farm to Fork and Bio-diversity Strategies EB-30, U.S. Department of Agriculture, Economic Research Service 52 p. https://www.ers.usda.gov/webdocs/publications/99741/eb-30.pdf?v=4469.8 Search in Google Scholar

Beyaz R., Yildiz M. 2017. The use of gamma irradiation in plant mutation breeding. In: Jurić S. (Ed.), Plant Engineering. InTech, Croatia, pp. 33–46. DOI: 10.5772/intechopen.69974. BeyazR. YildizM. 2017 The use of gamma irradiation in plant mutation breeding In: JurićS. (Ed.), Plant Engineering InTech Croatia 33 46 10.5772/intechopen.69974 Open DOISearch in Google Scholar

Boch J. 2011. TALEs of genome targeting. Nature Biotechnology 29(2): 135–136. DOI: 10.1038/nbt.1767. BochJ. 2011 TALEs of genome targeting Nature Biotechnology 29 2 135 136 10.1038/nbt.1767 21301438 Open DOISearch in Google Scholar

Bremmer J., Gonzalez-Martinez A., Jongeneel R., Huiting H., Stokkers R., Ruijs M. 2021. Impact assessment of EC 2030 Green Deal targets for sustainable crop production. The Netherlands, Wageningen Economic Research, Report 2021–150, 70 p. DOI: 10.18174/558517. BremmerJ. Gonzalez-MartinezA. JongeneelR. HuitingH. StokkersR. RuijsM. 2021 Impact assessment of EC 2030 Green Deal targets for sustainable crop production The Netherlands Wageningen Economic Research Report 2021–150, 70 p. 10.18174/558517 Open DOISearch in Google Scholar

Chagné D. 2015. Whole genome sequencing of fruit tree species. Advances in Botanical Research 74: 1–37. DOI: 10.1016/bs.abr.2015.04.004. ChagnéD. 2015 Whole genome sequencing of fruit tree species Advances in Botanical Research 74 1 37 10.1016/bs.abr.2015.04.004 Open DOISearch in Google Scholar

Chen J-T., Coate J.E., Meru G. 2020. Editorial: Artificial polyploidy in plants. Frontiers in Plant Science 11; 621849; 3 p. DOI: 10.3389/fpls.2020.621849. ChenJ-T. CoateJ.E. MeruG. 2020 Editorial: Artificial polyploidy in plants Frontiers in Plant Science 11 621849 3 p. 10.3389/fpls.2020.621849 775039633365045 Open DOISearch in Google Scholar

CJEU 2018. EU:C:2018:583, Case C-528/16. Judgement of 25 July 2018. Court of Justice of the European Union. https://curia.europa.eu/juris/document/document.jsf?mode=DOC&pageIndex=0&docid=204387 CJEU 2018 EU:C:2018:583, Case C-528/16. Judgement of 25 July 2018 Court of Justice of the European Union https://curia.europa.eu/juris/document/document.jsf?mode=DOC&pageIndex=0&docid=204387 Search in Google Scholar

Curtin S.J., Zhang F, Sander J.D., Haun W.J., Starker C., Baltes N.J. et al. 2011. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases. Plant Physiology 156(2): 466–473. DOI: 10.1104/pp.111.172981. CurtinS.J. ZhangF SanderJ.D. HaunW.J. StarkerC. BaltesN.J. 2011 Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases Plant Physiology 156 2 466 473 10.1104/pp.111.172981 317725021464476 Open DOISearch in Google Scholar

Darwin C. 1868. The variation of animals and plants under domestication. John Murray, London, UK. DOI: 10.1017/cbo9780511709500. DarwinC. 1868 The variation of animals and plants under domestication John Murray London, UK 10.1017/cbo9780511709500 Open DOISearch in Google Scholar

Drake J.W., Charlesworth B., Charlesworth D., Crow J.F. 1998. Rates of spontaneous mutation. Genetics 148(4): 1667–1686. DOI: 10.1093/genetics/148.4.1667. DrakeJ.W. CharlesworthB. CharlesworthD. CrowJ.F. 1998 Rates of spontaneous mutation Genetics 148 4 1667 1686 10.1093/genetics/148.4.1667 14600989560386 Open DOISearch in Google Scholar

EC 2020a. A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2020) 381 final, 19 p. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 EC 2020a A Farm to Fork Strategy for a fair, healthy and environmentally-friendly food system Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2020) 381 final, 19 p. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381 Search in Google Scholar

EC 2020b. EU Biodiversity Strategy for 2030. Bringing nature back into our lives. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2020) 380 final, 22 p. https://ec.europa.eu/environment/nature/bio-diversity/strategy/index_en.htm EC 2020b EU Biodiversity Strategy for 2030. Bringing nature back into our lives Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. COM(2020) 380 final, 22 p. https://ec.europa.eu/environment/nature/bio-diversity/strategy/index_en.htm Search in Google Scholar

EC 2021. Study on the status of new genomic techniques under Union law and in light of the Court of Justice ruling in Case C-528/16. Commission Staff Working Document. European Commission. SWD(2021) 92 final, 116 p. https://food.ec.europa.eu/system/files/2021-04/gmo_mod-bio_ngt_eu-study.pdf EC 2021 Study on the status of new genomic techniques under Union law and in light of the Court of Justice ruling in Case C-528/16 Commission Staff Working Document. European Commission. SWD(2021) 92 final, 116 p. https://food.ec.europa.eu/system/files/2021-04/gmo_mod-bio_ngt_eu-study.pdf Search in Google Scholar

EFSA 2020. Applicability of the EFSA Opinion on site-directed nucleases type 3 for the safety assessment of plants developed using site-directed nucleases type 1 and 2 and oligonucleotide-directed mutagenesis. EFSA Panel on Genetically Modified Organisms. EFSA Journal 18(11); e06299; 14 p. DOI: 10.2903/j.efsa.2020.6299. EFSA 2020 Applicability of the EFSA Opinion on site-directed nucleases type 3 for the safety assessment of plants developed using site-directed nucleases type 1 and 2 and oligonucleotide-directed mutagenesis EFSA Panel on Genetically Modified Organisms. EFSA Journal 18 11 e06299 14 p. 10.2903/j.efsa.2020.6299 768497033281977 Open DOISearch in Google Scholar

Fluhr R., Aviv D., Galun E., Edelman M. 1985. Efficient induction and selection of chloroplast-encoded antibiotic-resistant mutants in Nicotiana. Proceedings of the National Academy of Sciences 82(5): 1485–1489. DOI: 10.1073/pnas.82.5.1485. FluhrR. AvivD. GalunE. EdelmanM. 1985 Efficient induction and selection of chloroplast-encoded antibiotic-resistant mutants in Nicotiana Proceedings of the National Academy of Sciences 82 5 1485 1489 10.1073/pnas.82.5.1485 39728716593549 Open DOISearch in Google Scholar

Gaudelli N.M., Komor A.C., Rees H.A., Packer M.S., Badran A.H., Bryson D.I., Liu D.R. 2017. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551(7681): 464–471. DOI: 10.1038/nature24644. GaudelliN.M. KomorA.C. ReesH.A. PackerM.S. BadranA.H. BrysonD.I. LiuD.R. 2017 Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage Nature 551 7681 464 471 10.1038/nature24644 572655529160308 Open DOISearch in Google Scholar

Granhall I. 1954. Spontaneous and induced bud mutations in fruit trees. Acta Agriculturae Scandinavica 4(1): 594–600. DOI: 10.1080/00015125409439967. GranhallI. 1954 Spontaneous and induced bud mutations in fruit trees Acta Agriculturae Scandinavica 4 1 594 600 10.1080/00015125409439967 Open DOISearch in Google Scholar

Hanna R.E., Doench J.G. 2020. Design and analysis of CRISPR–Cas experiments. Nature Biotechnology 38(7): 813–823. DOI: 10.1038/s41587-020-0490-7. HannaR.E. DoenchJ.G. 2020 Design and analysis of CRISPR–Cas experiments Nature Biotechnology 38 7 813 823 10.1038/s41587-020-0490-7 32284587 Open DOISearch in Google Scholar

Henning C., Witzke P., Panknin L., Grunenberg M. 2021. Ökonomische und Ökologische Auswirkungen des Green Deals in der Agrarwirtschaf. Department of Agricultural Economics, Agricultural Policy, Kiel University, Germany, 238 p. [in German] https://www.bio-pop.agrarpol.uni-kiel.de/de/f2f-studie/vollversion-der-studie-deutsch HenningC. WitzkeP. PankninL. GrunenbergM. 2021 Ökonomische und Ökologische Auswirkungen des Green Deals in der Agrarwirtschaf Department of Agricultural Economics, Agricultural Policy, Kiel University Germany 238 p. [in German] https://www.bio-pop.agrarpol.uni-kiel.de/de/f2f-studie/vollversion-der-studie-deutsch Search in Google Scholar

Hutchison C.A., Phillips S., Edgell M.H., Gillam S., Jahnke P., Smith M. 1978. Mutagenesis at a specific position in a DNA sequence. Journal of Biological Chemistry 253(18): 6551–6560. DOI: 10.1016/s0021-9258(19)46967-6. HutchisonC.A. PhillipsS. EdgellM.H. GillamS. JahnkeP. SmithM. 1978 Mutagenesis at a specific position in a DNA sequence Journal of Biological Chemistry 253 18 6551 6560 10.1016/s0021-9258(19)46967-6 Open DOISearch in Google Scholar

Illa E., Eduardo I., Audergon J.M., Barale F., Dirlewanger E., Li X. et al. 2011. Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Molecular Breeding 28(4): 667–682. DOI: 10.1007/s11032-010-9518-x. IllaE. EduardoI. AudergonJ.M. BaraleF. DirlewangerE. LiX. 2011 Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality Molecular Breeding 28 4 667 682 10.1007/s11032-010-9518-x Open DOISearch in Google Scholar

Jaganathan D., Ramasamy K., Sellamuthu G., Jayabalan S., Venkataraman G. 2018. CRISPR for crop improvement: An update review. Frontiers in Plant Science 9; 985; 17 p. DOI: 10.3389/fpls.2018.00985. JaganathanD. RamasamyK. SellamuthuG. JayabalanS. VenkataramanG. 2018 CRISPR for crop improvement: An update review Frontiers in Plant Science 9 985 17 p. 10.3389/fpls.2018.00985 605666630065734 Open DOISearch in Google Scholar

Janick J. 2011. History of fruit breeding. Fruit, Vegetable and Cereal Science and Biotechnology 5(Special Issue 1): 1–7. JanickJ. 2011 History of fruit breeding Fruit, Vegetable and Cereal Science and Biotechnology 5 Special Issue 1 1 7 Search in Google Scholar

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J.A., Charpentier E. 2012. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096): 816–821. DOI: 10.1126/science.1225829. JinekM. ChylinskiK. FonfaraI. HauerM. DoudnaJ.A. CharpentierE. 2012 A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity Science 337 6096 816 821 10.1126/science.1225829 628614822745249 Open DOISearch in Google Scholar

Karavolias N.G., Horner W., Abugu M.N., Evanega S.N. 2021. Application of gene editing for climate change in agriculture. Frontiers in Sustainable Food Systems 5; 685801; 23 p. DOI: 10.3389/fsufs.2021.685801. KaravoliasN.G. HornerW. AbuguM.N. EvanegaS.N. 2021 Application of gene editing for climate change in agriculture Frontiers in Sustainable Food Systems 5 685801 23 p. 10.3389/fsufs.2021.685801 Open DOISearch in Google Scholar

Kharkwal M.C. 2012. A brief history of plant mutagenesis. In: Shu Q.Y., Forster B.P., Nakagawa H. (Eds.), Plant mutation breeding and biotechnology. CABI, pp. 21–30. DOI: 10.1079/9781780640853.0021. KharkwalM.C. 2012 A brief history of plant mutagenesis In: ShuQ.Y. ForsterB.P. NakagawaH. (Eds.), Plant mutation breeding and biotechnology CABI 21 30 10.1079/9781780640853.0021 Open DOISearch in Google Scholar

Kim Y.-G., Cha J., Chandrasegaran S. 1996. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proceedings of the National Academy of Sciences 93(3): 1156–1160. DOI: 10.1073/pnas.93.3.1156. KimY.-G. ChaJ. ChandrasegaranS. 1996 Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain Proceedings of the National Academy of Sciences 93 3 1156 1160 10.1073/pnas.93.3.1156 400488577732 Open DOISearch in Google Scholar

Kleinstiver B.P., Prew M.S., Tsai S.Q., Nguyen N.T., Topkar V.V., Zheng Z., Joung J.K. 2015. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nature Biotechnology 33(12): 1293–1298. DOI: 10.1038/nbt.3404. KleinstiverB.P. PrewM.S. TsaiS.Q. NguyenN.T. TopkarV.V. ZhengZ. JoungJ.K. 2015 Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition Nature Biotechnology 33 12 1293 1298 10.1038/nbt.3404 468914126524662 Open DOISearch in Google Scholar

Komor A.C., Kim Y.B., Packer M.S., Zuris J.A., Liu D.R. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533(7603): 420–424. DOI: 10.1038/nature17946. KomorA.C. KimY.B. PackerM.S. ZurisJ.A. LiuD.R. 2016 Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage Nature 533 7603 420 424 10.1038/nature17946 487337127096365 Open DOISearch in Google Scholar

Leitao J. 2012. Chemical mutagenesis. In: Shu Q.Y., Forster B.P., Nakagawa H. (Eds.), Plant mutation breeding and biotechnology. CABI, pp. 135–158. DOI: 10.1079/9781780640853.0135. LeitaoJ. 2012 Chemical mutagenesis In: ShuQ.Y. ForsterB.P. NakagawaH. (Eds.), Plant mutation breeding and biotechnology CABI 135 158 10.1079/9781780640853.0135 Open DOISearch in Google Scholar

Liu Q., Yang F., Zhang J., Liu H., Rahman S., Islam S. et al. 2021. Application of CRISPR/Cas9 in crop quality improvement. International Journal of Molecular Sciences 22(8); 4206; 16 p. DOI: 10.3390/ijms22084206. LiuQ. YangF. ZhangJ. LiuH. RahmanS. IslamS. 2021 Application of CRISPR/Cas9 in crop quality improvement International Journal of Molecular Sciences 22 8 4206 16 p. 10.3390/ijms22084206 807329433921600 Open DOISearch in Google Scholar

Modrzejewski D., Hartung F., Sprink T., Krause D., Kohl C., Wilhelm R. 2019. What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map. Environmental Evidence 8; 27; 33 p. DOI: 10.1186/s13750-019-0171-5. ModrzejewskiD. HartungF. SprinkT. KrauseD. KohlC. WilhelmR. 2019 What is the available evidence for the range of applications of genome-editing as a new tool for plant trait modification and the potential occurrence of associated off-target effects: a systematic map Environmental Evidence 8 27 33 p. 10.1186/s13750-019-0171-5 Open DOISearch in Google Scholar

Nakamura M., Nunoshiba T., Hiratsu K. 2021. Detection and analysis of UV-induced mutations in the chromosomal DNA of Arabidopsis. Biochemical and Biophysical Research Communications 554: 89–93. DOI: 10.1016/j.bbrc.2021.03.087. NakamuraM. NunoshibaT. HiratsuK. 2021 Detection and analysis of UV-induced mutations in the chromosomal DNA of Arabidopsis Biochemical and Biophysical Research Communications 554 89 93 10.1016/j.bbrc.2021.03.087 33784511 Open DOISearch in Google Scholar

Oladosu Y., Rafii M.Y., Abdullah N., Hussin G., Ramli A., Rahim H.A. et al. 2016. Principle and application of plant mutagenesis in crop improvement: a review. Biotechnology and Biotechnological Equipment 30(1): 1–16. DOI: 10.1080/13102818.2015.1087333. OladosuY. RafiiM.Y. AbdullahN. HussinG. RamliA. RahimH.A. 2016 Principle and application of plant mutagenesis in crop improvement: a review Biotechnology and Biotechnological Equipment 30 1 1 16 10.1080/13102818.2015.1087333 Open DOISearch in Google Scholar

Oldach K.H. 2011. Mutagenesis. In: Pratap A., Kumar J. (Eds.), Biology and breeding of food legumes. CABI, pp. 208–219. DOI: 10.1079/9781845937669.0208. OldachK.H. 2011 Mutagenesis In: PratapA. KumarJ. (Eds.), Biology and breeding of food legumes CABI 208 219 10.1079/9781845937669.0208 Open DOISearch in Google Scholar

Osakabe Y., Osakabe K. 2015. Genome editing with engineered nucleases in plants. Plant and Cell Physiology 56(3): 389–400. DOI: 10.1093/pcp/pcu170. OsakabeY. OsakabeK. 2015 Genome editing with engineered nucleases in plants Plant and Cell Physiology 56 3 389 400 10.1093/pcp/pcu170 25416289 Open DOISearch in Google Scholar

Owais W.M., Kleinhofs A. 1988. Metabolic activation of the mutagen azide in biological systems. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 197(2): 313–323. DOI: 10.1016/0027-5107(88)90101-7. OwaisW.M. KleinhofsA. 1988 Metabolic activation of the mutagen azide in biological systems Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 197 2 313 323 10.1016/0027-5107(88)90101-7 3123923 Open DOISearch in Google Scholar

Pathirana R. 2011. Plant mutation breeding in agriculture. Plant Sciences Reviews 2011. CAB Reviews 6(32): 107–126. DOI: 10.1079/pavsnnr20116032. PathiranaR. 2011 Plant mutation breeding in agricultur. Plant Sciences Reviews 2011 CAB Reviews 6 32 107 126 10.1079/pavsnnr20116032 Open DOISearch in Google Scholar

Puchta H., Dujon B., Hohn B. 1993. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Research 21(22): 5034–5040. DOI: 10.1093/nar/21.22.5034. PuchtaH. DujonB. HohnB. 1993 Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease Nucleic Acids Research 21 22 5034 5040 10.1093/nar/21.22.5034 3106148255757 Open DOISearch in Google Scholar

Ramirez-Torres F., Ghogare R., Stowe E., Cerdá-Bennasser P., Lobato-Gómez M., Williamson-Benavides B.A. et al. 2021. Genome editing in fruit, ornamental, and industrial crops. Transgenic Research 30(4): 499–528. DOI: 10.1007/s11248-021-00240-3. Ramirez-TorresF. GhogareR. StoweE. Cerdá-BennasserP. Lobato-GómezM. Williamson-BenavidesB.A. 2021 Genome editing in fruit, ornamental, and industrial crops Transgenic Research 30 4 499 528 10.1007/s11248-021-00240-3 952440233825100 Open DOISearch in Google Scholar

Ryczek N., Hryhorowicz M., Zeyland J., Lipiński D., Słomski R. 2021. CRISPR/Cas technology in pig-to-human xenotransplantation research. International Journal of Molecular Sciences 22(6); 3196; 22 p. DOI: 10.3390/ijms22063196. RyczekN. HryhorowiczM. ZeylandJ. LipińskiD. SłomskiR. 2021 CRISPR/Cas technology in pig-to-human xenotransplantation research International Journal of Molecular Sciences 22 6 3196 22 p. 10.3390/ijms22063196 800418733801123 Open DOISearch in Google Scholar

Sanada T., Amano E. 1998. Induced mutation in fruit trees. In: Jain S.M., Brar D.S., Ahloowalia B.S. (Eds.), Somaclonal variation and induced mutations in crop improvement. Current Plant Science and Biotechnology in Agriculture 32: 401–419. DOI: 10.1007/978-94-015-9125-6_20. SanadaT. AmanoE. 1998 Induced mutation in fruit trees In: JainS.M. BrarD.S. AhloowaliaB.S. (Eds.), Somaclonal variation and induced mutations in crop improvement Current Plant Science and Biotechnology in Agriculture 32 401 419 10.1007/978-94-015-9125-6_20 Open DOISearch in Google Scholar

Sattar M.N., Iqbal Z., Al-Khayri J.M., Jain S.M. 2021. Induced genetic variations in fruit trees using new breeding tools: Food security and climate resilience. Plants 10(7); 1347; 36 p. DOI: 10.3390/plants10071347. SattarM.N. IqbalZ. Al-KhayriJ.M. JainS.M. 2021 Induced genetic variations in fruit trees using new breeding tools: Food security and climate resilience Plants 10 7 1347 36 p. 10.3390/plants10071347 830916934371550 Open DOISearch in Google Scholar

Sattler M.C., Carvalho C.R., Clarindo W.R. 2016. The polyploidy and its key role in plant breeding. Planta 243(2): 281–296. DOI: 10.1007/s00425-015-2450-x. SattlerM.C. CarvalhoC.R. ClarindoW.R. 2016 The polyploidy and its key role in plant breeding Planta 243 2 281 296 10.1007/s00425-015-2450-x 26715561 Open DOISearch in Google Scholar

Scott A. 2018. How CRISPR is transforming drug discovery. Nature 555(7695): S10–S11. DOI: 10.1038/d41586-018-02477-1. ScottA. 2018 How CRISPR is transforming drug discovery Nature 555 7695 S10 S11 10.1038/d41586-018-02477-1 32094975 Open DOISearch in Google Scholar

Sikora P., Chawade A., Larsson M., Olsson J., Olsson O. 2011. Mutagenesis as a tool in plant genetics, functional genomics, and breeding. International Journal of Plant Genomics 2011; 314829; 13 p. DOI: 10.1155/2011/314829. SikoraP. ChawadeA. LarssonM. OlssonJ. OlssonO. 2011 Mutagenesis as a tool in plant genetics, functional genomics, and breeding International Journal of Plant Genomics 2011 314829 13 p. 10.1155/2011/314829 327040722315587 Open DOISearch in Google Scholar

Smith J., Grizot S., Arnould S., Duclert A., Epinat J.-C., Chames P. et al. 2006. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences. Nucleic Acids Research 34(22); e149; 12 p. DOI: 10.1093/nar/gkl720. SmithJ. GrizotS. ArnouldS. DuclertA. EpinatJ.-C. ChamesP. 2006 A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences Nucleic Acids Research 34 22 e149 12 p. 10.1093/nar/gkl720 170248717130168 Open DOISearch in Google Scholar

Stadler L.J. 1928. Genetic effects of X-rays in maize. Proceedings of the National Academy of Sciences 14(1): 69–75. DOI: 10.1073/pnas.14.1.69. StadlerL.J. 1928 Genetic effects of X-rays in maize Proceedings of the National Academy of Sciences 14 1 69 75 10.1073/pnas.14.1.69 108535016587308 Open DOISearch in Google Scholar

Sussman D., Chadsey M., Fauce S., Engel A., Bruett A., Monnat R. Jr. et al. 2004. Isolation and characterization of new homing endonuclease specificities at individual target site positions. Journal of Molecular Biology 342(1): 31–41. DOI: 10.1016/j.jmb.2004.07.031. SussmanD. ChadseyM. FauceS. EngelA. BruettA. MonnatR.Jr. 2004 Isolation and characterization of new homing endonuclease specificities at individual target site positions Journal of Molecular Biology 342 1 31 41 10.1016/j.jmb.2004.07.031 15313605 Open DOISearch in Google Scholar

Stemple D.L. 2004. TILLING – a high-throughput harvest for functional genomics. Nature Reviews Genetics 5(2): 145–150. DOI: 10.1038/nrg1273. StempleD.L. 2004 TILLING – a high-throughput harvest for functional genomics Nature Reviews Genetics 5 2 145 150 10.1038/nrg1273 14726927 Open DOISearch in Google Scholar

Troggio M., Gleave A., Salvi S., Chagné D., Cestaro A., Kumar S. et al. 2012. Apple, from genome to breeding. Tree Genetics and Genomes 8(3): 509–529. DOI: 10.1007/s11295-012-0492-9. TroggioM. GleaveA. SalviS. ChagnéD. CestaroA. KumarS. 2012 Apple, from genome to breeding Tree Genetics and Genomes 8 3 509 529 10.1007/s11295-012-0492-9 Open DOISearch in Google Scholar

Vivian A., Arnold D.L. 2000. Bacterial effector genes and their role in host-pathogen interactions. Journal of Plant Pathology 82(3): 163–178. VivianA. ArnoldD.L. 2000 Bacterial effector genes and their role in host-pathogen interactions Journal of Plant Pathology 82 3 163 178 Search in Google Scholar

de Vries H. 1906. Species and varieties. Their origin by mutation. Open Court Publishing Company, London, UK. DOI: 10.5962/bhl.title.4640. de VriesH. 1906 Species and varieties. Their origin by mutation Open Court Publishing Company London, UK 10.5962/bhl.title.4640 Open DOISearch in Google Scholar

Watanabe H. 2001. Significance and expectations of ion beam breeding. Gamma Field Symposia 40: 15–19. WatanabeH. 2001 Significance and expectations of ion beam breeding Gamma Field Symposia 40 15 19 Search in Google Scholar

Wolters P.J., Schouten H.J., Velasco R., Si-Ammour A., Baldi P. 2013. Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytologist 200(4): 993–939. DOI: 10.1111/nph.12580. WoltersP.J. SchoutenH.J. VelascoR. Si-AmmourA. BaldiP. 2013 Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase New Phytologist 200 4 993 939 10.1111/nph.12580 24571666 Open DOISearch in Google Scholar

Yoshioka T., Masuda T., Kotobuki K., Sanada T., Ito Y. 1999. Gamma-ray-induced mutation breeding in fruit trees: Breeding of mutant cultivars resistant to black spot disease in Japanese pear. Japan Agricultural Research Quarterly 33(4): 227–234. YoshiokaT. MasudaT. KotobukiK. SanadaT. ItoY. 1999 Gamma-ray-induced mutation breeding in fruit trees: Breeding of mutant cultivars resistant to black spot disease in Japanese pear Japan Agricultural Research Quarterly 33 4 227 234 Search in Google Scholar

Zhang B. 2021. CRISPR/Cas gene therapy. Journal of Cellular Physiology 236(4): 2459–2481. DOI: 10.1002/jcp.30064. ZhangB. 2021 CRISPR/Cas gene therapy Journal of Cellular Physiology 236 4 2459 2481 10.1002/jcp.30064 32959897 Open DOISearch in Google Scholar

Zhang F., Maeder M.L., Unger-Wallace E., Hoshaw J.P., Reyon D., Christian M. et al. 2010. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proceedings of the National Academy of Sciences 107(26): 12028–12033. DOI: 10.1073/pnas.0914991107. ZhangF. MaederM.L. Unger-WallaceE. HoshawJ.P. ReyonD. ChristianM. 2010 High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases Proceedings of the National Academy of Sciences 107 26 12028 12033 10.1073/pnas.0914991107 290067320508152 Open DOISearch in Google Scholar

Zhang M.Y., Xue C., Hu H., Li J., Xue Y., Wang R. et al. 2021. Genome-wide association studies provide insights into the genetic determination of fruit traits of pear. Nature Communications 12; 1144; 10 p. DOI: 10.1038/s41467-021-21378-y. ZhangM.Y. XueC. HuH. LiJ. XueY. WangR. 2021 Genome-wide association studies provide insights into the genetic determination of fruit traits of pear Nature Communications 12 1144 10 p. 10.1038/s41467-021-21378-y 789257033602909 Open DOISearch in Google Scholar

Zhao Z., Li C., Tong F., Deng J., Huang G., Sang Y. 2021. Review of applications of CRISPR-Cas9 gene-editing technology in cancer research. Biological Procedures Online 23; 14; 13 p. DOI: 10.1186/s12575-021-00151-x. ZhaoZ. LiC. TongF. DengJ. HuangG. SangY. 2021 Review of applications of CRISPR-Cas9 gene-editing technology in cancer research Biological Procedures Online 23 14 13 p. 10.1186/s12575-021-00151-x 828166234261433 Open DOISearch in Google Scholar

Zhu B., Wang D., Wei N. 2022. Enzyme discovery and engineering for sustainable plastic recycling. Trends in Biotechnology 40(1): 22–37. DOI: 10.1016/j.tibtech.2021.02.008. ZhuB. WangD. WeiN. 2022 Enzyme discovery and engineering for sustainable plastic recycling Trends in Biotechnology 40 1 22 37 10.1016/j.tibtech.2021.02.008 33676748 Open DOISearch in Google Scholar

Zimmermann F.K. 1977. Genetic effects of nitrous acids. Mutation Research/Reviews in Genetic Toxicology 39(2): 127–148. DOI: 10.1016/0165-1110(77)90019-7. ZimmermannF.K. 1977 Genetic effects of nitrous acids Mutation Research/Reviews in Genetic Toxicology 39 2 127 148 10.1016/0165-1110(77)90019-7 325396 Open DOISearch in Google Scholar

eISSN:
2353-3978
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Plant Science, Ecology, other