Cite

Baninasab B. 2009. Amelioration of chilling stress by paclobutrazol in watermelon seedlings. Scientia Horticulturae 121: 144–148. DOI: 10.1016/j.scienta.2009.01.028.10.1016/j.scienta.2009.01.028Open DOISearch in Google Scholar

Bernacchi C.J., Bagley J.E., Serbin S.P., Ruiz-Vera U.M., Rosenthal D.M., VanLoocke A. 2013. Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell and Environment 36: 1641–1657. DOI: 10.1111/pce.12118.10.1111/pce.12118Open DOISearch in Google Scholar

Cai Y.-F., Li S.-F., Li S.-F., Xie W.-J., Song J. 2014. How do leaf anatomies and photosynthesis of three Rhododendron species relate to their natural environments? Botanical Studies 55; 36, 9 p. DOI: 10.1186/1999-3110-55-36.10.1186/1999-3110-55-36Open DOISearch in Google Scholar

Conover C.A. 1994. Angel-Wing begonia growth and water requirements affected by Paclobutrazol. Apopka Research Report RH-94-4. University of Florida, Institute of Food and Agricultural Sciences. https://mrec.ifas.ufl.edu/foliage/resrpts/rh_94_4.htmSearch in Google Scholar

Cown D., Marshall H., Silcock P., Meason D. 2013. Sawn timber grade recovery from a planted coast redwood stand growing in New Zealand. New Zealand Journal of Forestry Science 43; 8, 11 p. DOI: 10.1186/1179-5395-43-8.10.1186/1179-5395-43-8Open DOISearch in Google Scholar

Davis T.D., Curry E.A., Steffens G.L. 1991. Chemical regulation of vegetative growth. Critical Reviews in Plant Sciences Sci. 10: 151–188. DOI: 10.1080/07352689109382310.10.1080/07352689109382310Search in Google Scholar

Dwivedi S.K., Arora A., Kumar S. 2017. Paclobutrazol-induced alleviation of water-deficit damage in relation to photosynthetic characteristics and expression of stress markers in contrasting wheat geno-types. Photosynthetica 55: 351–359. DOI: 10.1007/s11099-016-0652-5.10.1007/s11099-016-0652-5Open DOISearch in Google Scholar

Elanchezhian R., Haris A.A., Kumar S., Singh S.S. 2015. Positive impact of paclobutrazol on gas exchange, chlorophyll fluorescence and yield parameters under submergence stress in rice. Indian Journal of Plant Physiology 20: 111–115. DOI: 10.1007/s40502-015-0144-9.10.1007/s40502-015-0144-9Open DOISearch in Google Scholar

Fletcher R.A., Gilley A., Sankhla N., Davis T.D. 2000. Triazoles as plant growth regulators and stress protectants. Horticultural Reviews 24: 55–137. DOI: 10.1002/9780470650776.ch3.10.1002/9780470650776.ch3Open DOISearch in Google Scholar

Flexas J., Medrano H. 2002. Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany 89: 183–189. DOI: 10.1093/aob/mcf027.10.1093/aob/mcf027Open DOISearch in Google Scholar

Genty B., Briantais J.-M., Baker N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990: 87–92. DOI: 10.1016/s0304-4165(89)80016-9.10.1016/s0304-4165(89)80016-9Open DOISearch in Google Scholar

Gilley A., Fletcher R.A. 1997. Relative efficacy of paclobutrazol, propiconazole and tetraconazole as stress protectants in wheat seedlings. Plant Growth Regulation 21: 169–175. DOI: 10.1023/a:1005804717016.10.1023/a:1005804717016Open DOISearch in Google Scholar

Hu H., Wang L., Li Y., Sun J., Zhou Q., Huang X. 2016a. Insight into mechanism of lanthanum (III) induced damage to plant photosynthesis. Ecotoxicology and Environmental Safety 127: 43–50. DOI: 10.1016/j.ecoenv.2016.01.008.10.1016/j.ecoenv.2016.01.00826802561Open DOISearch in Google Scholar

Hu H., Wang L., Zhou Q., Huang X. 2016b. Combined effects of simulated acid rain and lanthanum chloride on chloroplast structure and functional elements in rice. Environmental Science and Pollution Research 23: 8902–8916. DOI: 10.1007/s11356-015-5962-9.10.1007/s11356-015-5962-926815371Open DOISearch in Google Scholar

Hunter D.M., Proctor J.T.A. 1994. Paclobutrazol reduces photosynthetic carbon dioxide uptake rate in grapevines. Journal of the American Society for Horticultural Science 119: 486–491. DOI: 10.21273/jashs.119.3.486.10.21273/JASHS.119.3.486Search in Google Scholar

Hu Y., Yu W., Liu T., Shafi M., Song L., Du X. et al. 2017. Effects of paclobutrazol on cultivars of Chinese bayberry (Myrica rubra) under salinity stress. Photosynthetica 55: 443–453. DOI: 10.1007/s11099-016-0658-z.10.1007/s11099-016-0658-zOpen DOISearch in Google Scholar

Januskaitiene I. 2011. Effects of substrate acidity and UV-B radiation on photosynthesis of radishes. Central European Journal of Biology 6: 624–631. DOI: 10.2478/s11535-011-0027-7.10.2478/s11535-011-0027-7Open DOISearch in Google Scholar

Jones H.G. 1985. Partitioning stomatal and non-stomatal limitations to photosynthesis. Plant, Cell and Environment 8: 95–104. DOI: 10.1111/j.1365-3040.1985.tb01227.x.10.1111/j.1365-3040.1985.tb01227.xSearch in Google Scholar

Ju S.M., Gao M.X., Xu D.L. 2007. Research on the cutting for Sequoia sempervirens. Journal of Xuzhou Institute of Technology 22: 40–43. [in Chinese with English abstract]Search in Google Scholar

Ju S.M., Gao M.X., Xu D.L. 2009. Study on the asexual rapid propagation of cold-resistant Sequoia sempervirens. Practical Forestry Technology 1: 23–27. [in Chinese]Search in Google Scholar

Liu C., Xia X., Yin W., Huang L., Zhou J. 2006. Shoot regeneration and somatic embryogenesis from needles of redwood (Sequoia sempervirens (D. Don.) Endl.). Plant Cell Reports 25: 621–628. DOI: 10.1007/s00299-006-0120-y.10.1007/s00299-006-0120-y16496152Open DOISearch in Google Scholar

Ma Q.-W., Li F.-L., Li C.-S. 2005. The coast redwoods (Sequoia, Taxodiaceae) from the Eocene of Heilongjiang and the Miocene of Yunnan, China. Review of Palaeobotany and Palynology 135: 117–129. DOI: 10.1016/j.revpalbo.2005.03.002.10.1016/j.revpalbo.2005.03.002Open DOISearch in Google Scholar

Mataa M., Tominaga S., Kozaki I. 1998. Relative effects of growth retardant (paclobutrazol) and water stress on tree growth and photosynthesis in ponkan (Citrus reticulate Blanco). Journal of the Japanese Society for Horticultural Scienc 67: 28–34. DOI: 10.2503/jjshs.67.28.10.2503/jjshs.67.28Open DOISearch in Google Scholar

Mohammadi M.H.S., Etemadi N., Arab M.M., Aalifar M., Arab M., Pessarakli M. 2017. Molecular and physiological responses of Iranian Perennial ryegrass as affected by trinexapac ethyl, paclobutrazol and abscisic acid under drought stress. Plant Physiology and Biochemistry 111: 129–143. DOI: 10.1016/j.plaphy.2016.11.014.10.1016/j.plaphy.2016.11.01427915174Open DOISearch in Google Scholar

Mohammed N.T., Awang Y., Ahmad I., Noori R.S. 2017. Gas exchange, growth and flowering of Lagerstroemia indica treated with different concentration and application techniques of paclobutrazol. Asian Journal of Plant Sciences 16: 37–44. DOI: 10.3923/ajps.2017.37.44.10.3923/ajps.2017.37.44Open DOISearch in Google Scholar

Moradi S., Baninasab B., Gholami M., Ghobadi C. 2017. Paclobutrazol application enhances antioxidant enzyme activities in pomegranate plants affected by cold stress. Journal of Horticultural Science and Biotechnology 92: 65–71. DOI: 10.1080/14620316.2016.1224605.10.1080/14620316.2016.1224605Open DOISearch in Google Scholar

Moreira R.A., Fernandes D.R., da Cruz, M.C.M., Lima J.E., de Oliveira A.F. 2016. Water restriction, girdling and paclobutrazol on flowering and production of olive cultivars. Scientia Horticulturae 200: 197–204. DOI: 10.1016/j.scienta.2016.01.014.10.1016/j.scienta.2016.01.014Open DOISearch in Google Scholar

Navarro A., Sánchez-Blanco M.J., Bañon S. 2007. Influence of paclobutrazol on water consumption and plant performance of Arbutus unedo seedlings. Scientia Horticulturae 111: 133–139. DOI: 10.1016/j.scienta.2006.10.014.10.1016/j.scienta.2006.10.014Open DOISearch in Google Scholar

Olson D.F., Roy D.F., Walters G.A. 1990. Sequoia sempervirens (D. Don) Endl. redwood. In: Burns R.M., Honkala B.H. (Ed.), Silvics of North America; I. Conifers. Agriculture Handbook 654: 541–551.Search in Google Scholar

Pal S., Zhao J., Khan A, Yadav N.S., Batushansky A., Barak S., et al. 2016. Paclobutrazol induces tolerance in tomato to deficit irrigation through diversified effects on plant morphology, physiology and metabolism. Scientific Reports 6: 39321; 13 p. DOI: 10.1038/srep39321.10.1038/srep39321517794228004823Search in Google Scholar

Polishchuk O.V., Vodka M.V., Belyavskaya N.A., Khomochkin A.P., Zolotareva E.K. 2016. The effect of acid rain on ultrastructure and functional parameters of photosynthetic apparatus in pea leaves. Cell and Tissue Biology 10: 250–257. DOI: 10.1134/s1990519x16030093.10.1134/S1990519X16030093Search in Google Scholar

Rademacher W. 1995. Growth retardants: biochemical features and applications in horticulture. Acta Horticulturae 394: 57–73. DOI: 10.17660/acta-hortic.1995.394.5.10.17660/ActaHortic.1995.394.5Search in Google Scholar

Schreiber U. 2004. Pulse-Amplitude-Modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou Govindjee G.C. (Ed.), Chlorophyll a Fluorescence Advances in Photosyn-thesis and Respiration 19: 279–319. DOI: 10.1007/978-1-4020-3218-9_11.10.1007/978-1-4020-3218-9_11Open DOISearch in Google Scholar

Sun J., Hu H., Li Y., Wang L., Zhou Q., Huang X. 2016. Effects and mechanism of acid rain on plant chloroplast ATP synthase. Environmental Science and Pollution Research 23: 18296–18306. DOI: 10.1007/s11356-016-7016-3.10.1007/s11356-016-7016-327278067Open DOISearch in Google Scholar

Teto A.A., Laubscher C.P., Ndakidemi P.A., Matimati I. 2016. Paclobutrazol retards vegetative growth in hydroponically-cultured Leonotis leonurus (L.) R.Br. Lamiaceae for a multipurpose flowering potted plant. South African Journal of Botany 106: 67–70. DOI: 10.1016/j.sajb.2016.05.012.10.1016/j.sajb.2016.05.012Open DOISearch in Google Scholar

Velikova V., Tsonev T., Yordanov I. 1999. Light and CO2 responses of photosynthesis and chlorophyll fluorescence characteristics in bean plants after simulated acid rain. Physiologia Plantarum 107: 77–83. DOI: 10.1034/j.1399-3054.1999.100111.x.10.1034/j.1399-3054.1999.100111.xOpen DOISearch in Google Scholar

Vu J.C.V., Yelenosky G. 1992. Growth and photosynthesis of sweet orange plants treated with paclobutrazol. Journal of Plant Growth Regulation 11: 85–89. DOI: 10.1007/bf00198019.10.1007/bf00198019Open DOISearch in Google Scholar

Wang Y., Li W., Shi S., Liu L., Xie J., Wei Y. 2012. The chlorophyll fluorescence characteristics change of litchi leaves after sprayed PP333 in winter. Chinese Journal of Tropical Crops 33: 1024–1029. [in Chinese with English abstract]Search in Google Scholar

Yu Y., Zhang L., Wang H., Li C., Niu T., Yan T., Wang C. 2014. Effect ABA and PP333 on the photosynthesis and chlorophyll fluorescence parameters of Cymbidium seedlings which in low temperature stress and its recovery. Journal of Agriculture 4: 30–37. [in Chinese with English abstract]Search in Google Scholar

Zhang J.-W., D’Rozario A., Adams J.M., Li Y., Liang X.-Q., Jacques F.M. et al. 2015. Sequoia maguanensis, a new Miocene relative of the coast redwood, Sequoia sempervirens, from China: Implications for paleogeography and paleoclimate. American Journal of Botany 102: 103–118. DOI: 10.3732/ajb.1400347.10.3732/ajb.140034725587153Open DOISearch in Google Scholar

Zhao X., Li Y., Zheng M., Bian X., Liu M., Sun Y. et al. 2015. Comparative analysis of growth and photo-synthetic characteristics of (Populus simonii × P. nigra) × (P. nigra × P. simonii) hybrid clones of different ploidides. PLoS ONE 10; e0119259, 16 p. DOI: 10.1371/journal.pone.0119259.10.1371/journal.pone.0119259439509825867100Search in Google Scholar

Zuo X., Qi R., Wang Y., Shao J., Peng M. 2000. Introduction and ecological adaptability of Sequoia sempervirens Endl. in China. Yunnan Forestry Science and Technology 93: 36–40. [in Chinese with English abstract]Search in Google Scholar

Zuo X., Bai S., Shao J., Peng M., Qi R., Wang Y. 2003. Growth of Sequoia sempervirens introduced to Yunnan and reforestation prospect. Yunnan Forestry Science and Technology 104: 2–10. [in Chinese with English abstract]Search in Google Scholar

eISSN:
2300-5009
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Plant Science, Ecology, other