1. bookVolumen 26 (2018): Edición 1 (June 2018)
Detalles de la revista
License
Formato
Revista
eISSN
2353-3978
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año
Idiomas
Inglés
Acceso abierto

The Effect of Hybrid Drying (Convective-Microwave-Ultrasound) on the Bioactive Properties of Osmo-Treated Sour Cherries

Publicado en línea: 29 Jun 2018
Volumen & Edición: Volumen 26 (2018) - Edición 1 (June 2018)
Páginas: 23 - 36
Recibido: 01 Dec 2017
Aceptado: 01 Apr 2018
Detalles de la revista
License
Formato
Revista
eISSN
2353-3978
Primera edición
30 Jul 2013
Calendario de la edición
2 veces al año
Idiomas
Inglés

Bell P.G., Gaze D.C., Davison G.W., George T.W., Scotter M.J., Howatson G. 2014. Montmorency tart cherry (Prunus cerasus L.) concentrate lowers uric acid, independent of plasma cyanidin-3-O-gluco-siderutinoside. Journal of Functional Foods 11: 82–90. DOI: 10.1016/j.jff.2014.09.004.10.1016/j.jff.2014.09.004Abierto DOISearch in Google Scholar

Braga A.R.C., Murador D.C, de Souza Mesquita L.M., de Rosso V.V. 2017. Bioavailability of anthocyanins: Gaps in knowledge, challenges and future research. Journal of Food Composition and Analysis 68: 31–40. DOI: 10.1016/j.jfca.2017.07.031.10.1016/j.jfca.2017.07.031Abierto DOISearch in Google Scholar

Calín-Sánchez Á., Kharaghani A., Lech K., Figiel A., Carbonell-Barrachina Á.A., Tsotsas E. 2015. Drying kinetics and microstructural and sensory properties of black chokeberry (Aronia melanocarpa) as affected by drying method. Food and Bioprocess Technology 8(1): 63–74. DOI: 10.1007/s11947-014-1383-x.10.1007/s11947-014-1383-xAbierto DOISearch in Google Scholar

Cárcel J.A., Garciá-Pérez J.V., Riera E., Mulet A. 2007. Influence of high-intensity ultrasound on drying kinetics of persimmon. Drying Technology 25: 185–193. DOI: 10.1080/07373930601161070.10.1080/07373930601161070Abierto DOISearch in Google Scholar

Damar İ., Ekşi A. 2012. Antioxidant capacity and anthocyanin profile of sour cherry (Prunus cerasus L.) juice. Food Chemistry 135: 2910–2914. DOI: 10.1016/j.foodchem.2012.07.032.10.1016/j.foodchem.2012.07.03222980889Abierto DOISearch in Google Scholar

Fan K., Zhang M., Mujumdar A.S. 2017. Application of airborne ultrasound in the convective drying of fruits and vegetables: a review. Ultrasonics – Sonochemistry 39: 47–57. DOI: 10.1016/j.ultsonch.2017.04.001.10.1016/j.ultsonch.2017.04.00128732971Abierto DOISearch in Google Scholar

Figiel A., Michalska A. 2017. Overall quality of fruits and vegetables products affected by the drying processes with the assistance of vacuum-microwaves. International Journal of Molecular Sciences 18(1; 71), 18 p. DOI: 10.3390/ijms18010071.10.3390/ijms18010071529770628042845Abierto DOISearch in Google Scholar

Horuz E., Bozkurt H., Karataş H., Maskan M. 2017. Effects of hybrid (microwave-convectional) and convectional drying on drying kinetics, total phenolics, antioxidant capacity, vitamin C, color and rehydration capacity of sour cherries. Food Chemistry 230: 295–305. DOI: 10.1016/j.foodchem.2017.03.046.10.1016/j.foodchem.2017.03.04628407914Abierto DOISearch in Google Scholar

Khoo G.M., Clausen M.R., Pedersen B.H., Larsen E. 2011. Bioactivity and total phenolic content of 34 sour cherry cultivars. Journal of Food Composition and Analysis 24: 772–776. DOI: 10.1016/j.jfca.2011.03.004.10.1016/j.jfca.2011.03.004Abierto DOISearch in Google Scholar

Konopacka D., Cybulska J., Zdunek A., Dyki B., Machlańska A., Celejewska K. 2017. The combined effect of ultrasound and enzymatic treatment on the nanostructure, carotenoid retention and sensory properties of ready-to-eat carrot chips. LWT – Food Science and Technology 85: 427–433. DOI: 10.1016/j.lwt.2016.11.085.10.1016/j.lwt.2016.11.085Abierto DOISearch in Google Scholar

Konopacka D., Jesionkowska K., Klewicki R., Bonazzi C. 2009. The effect of different osmotic agents on the sensory perception of osmo-treated dried fruit. Journal of Horticultural Science and Biotechnology 84(6): 80–84; ISAFRUIT (Special issue). DOI: 10.1080/14620316.2009.11512600.10.1080/14620316.2009.11512600Abierto DOISearch in Google Scholar

Konopacka D., Kowalski S.J. 2013. Application of ultrasound to enhance drying processes of biological materials especially susceptible to thermal exposure. Proceedings of XIII Polish Drying Symposium. 5–6 September, Poland, CD-ROM: 262, 3 p.Search in Google Scholar

Konopacka D., Parosa R., Piecko J., Połubok A., Siucińska K. 2015b. Ultrasound & microwave hybrid drying device for colored fruit preservation – product quality and energy efficiency. Proceedings of the 8th Asia-Pacific Drying Conference (ADC 2015). 10–12 August, Malaysia, pp. 252–258.Search in Google Scholar

Konopacka D., Płocharski W., Siucińska K., Kowalski S.J., Mierzwa D. 2015a. Ultrasound application as a useful technique in the enhancement of fruit and vegetable drying. Przemysł Fermentacyjny i Owocowo-Warzywny 59(9): 27–31. DOI: 10.15199/64.2015.9.3. [in Polish with English abstract]10.15199/64.2015.9.3.[Abierto DOISearch in Google Scholar

Konopacka D., Mieszczakowska-Frąc M. 2014. The quantitative and qualitative changes of sugars in sour cherry fruit subjected to osmo-convective drying. Zeszyty Problemowe Postępów Nauk Rolniczych 578: 61–70. [in Polish with English abstract]Search in Google Scholar

Konopacka D., Siucińska K., Grześkowiak P., Kowalczyk K., Ziętek P., Żytkiewicz J., Parosa R. 2017. Suszarka. Patent PL 227427 B1.Search in Google Scholar

Kowalski S.J., Pawłowski A. 2015. Intensification of apple drying due to ultrasound enhancement. Journal of Food Engineering 156: 1–9. DOI: 10.1016/j.jfoodeng.2015.01.023.10.1016/j.jfoodeng.2015.01.023Abierto DOISearch in Google Scholar

Kowalski S.J., Pawłowski A., Szadzińska J., Łechtańska J., Stasiak M. 2016. High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science and Emerging Technologies 34: 225–233. DOI: 10.1016/j.ifset.2016.02.006.10.1016/j.ifset.2016.02.006Abierto DOISearch in Google Scholar

Kowalski S.J., Szadzińska J., Pawłowski A. 2015. Ultrasonic-assisted osmotic dehydration of carrot followed by convective drying with continuous and intermittent heating. Drying Technology 33(13): 1570–1580. DOI: 10.1080/07373937.2015.1012265.10.1080/07373937.2015.1012265Abierto DOISearch in Google Scholar

Kumar C., Karim M.A., Joardder M.U.H. 2014. Intermittent drying of food products: a critical review. Journal of Food Engineering 121: 48–57. DOI: 10.1016/j.jfoodeng.2013.08.014.10.1016/j.jfoodeng.2013.08.014Abierto DOISearch in Google Scholar

Lewicki P.P. 2006. Design of hot air drying for better foods. Trends in Food Science and Technology 17: 153–163. DOI: 10.1016/j.tifs.2005.10.012.10.1016/j.tifs.2005.10.012Abierto DOISearch in Google Scholar

Michalska A., Wojdyło A., Lech K., Łysiak G.P., Figiel A. 2016. Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chemistry 207: 223–232. DOI: 10.1016/j.foodchem.2016.03.075.10.1016/j.foodchem.2016.03.075Abierto DOISearch in Google Scholar

Mieszczakowska-Frąc M., Buczek M., Kruczyńska D., Markowski J. 2015. Cloudy red-fleshed apple juice production and quality. Polish Journal of Natural Sciences 30(1): 59–71.Search in Google Scholar

Musielak G., Mierzwa D., Kroehnke J. 2016. Food drying enhancement by ultrasound – a review. Trends in Food Science and Technology 56: 126–141. DOI: 10.1016/j.tifs.2016.08.003.10.1016/j.tifs.2016.08.003Abierto DOISearch in Google Scholar

Onwude D.I., Hashim N., Janius R., Abdan K., Chen G., Oladejo A.O. 2017. Non-thermal hybrid drying of fruits and vegetables: a review of current technologies. Innovative Food Science and Emerging Technologies 43: 223–238. DOI: 10.1016/j.ifset.2017.08.010.10.1016/j.ifset.2017.08.010Abierto DOISearch in Google Scholar

Orrego C.E., Salgado N., Botero C.A. 2014. Developments and trends in fruit bar production and characterization. Critical Reviews in Food Science and Nutrition 54: 84–97. DOI: 10.1080/10408398.2011.571798.10.1080/10408398.2011.571798Abierto DOISearch in Google Scholar

Piasecka E., Uczciwek M., Konopacka D., Mieszczakowska-Frąc M., Szulc M., Bonazzi C. 2013. Effect of long-time storage on the content of polyphenols and ascorbic acid in osmo-convectively dried and osmo-freeze-dried fruits. Journal of Food Processing and Preservation 37: 198–209. DOI: 10.1111/j.1745-4549.2011.00637.x.10.1111/j.1745-4549.2011.00637.xAbierto DOISearch in Google Scholar

Rajewska K., Mierzwa D. 2017. Influence of ultrasound on the microstructure of plant tissue. Innovative Food Science and Emerging Technologies 43: 117–129. DOI: 10.1016/j.ifset.2017.07.034.10.1016/j.ifset.2017.07.034Abierto DOISearch in Google Scholar

Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9–10): 1231–1237. DOI: 10.1016/s0891-5849(98)00315-3.10.1016/S0891-5849(98)00315-3Abierto DOISearch in Google Scholar

Rodríguez Ó., Eim V., Rosselló C., Femenia A., Cárcel J.A., Simal S. 2017. Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture 98(5): 1660–1673. DOI: 10.1002/jsfa.8673.10.1002/jsfa.867328906555Abierto DOISearch in Google Scholar

Septembre-Malaterre A., Remize F., Poucheret P. 2018. Fruits and vegetables, as a source of nutritional compounds and phytochemicals: Changes in bioactive compounds during lactic fermentation. Food Research International 104: 86–99. DOI: 10.1016/j.foodres.2017.09.031.10.1016/j.foodres.2017.09.03129433787Abierto DOISearch in Google Scholar

Sijtsema S.J., Jesionkowska K., Symoneaux R., Konopacka D., Snoek H. 2012. Perceptions of the health and convenience characteristics of fresh and dried fruits. LWT – Food Science and Technology 49: 275–281. DOI: 10.1016/j.lwt.2012.04.027.10.1016/j.lwt.2012.04.027Abierto DOISearch in Google Scholar

Siucińska K., Konopacka D. 2014. Application of ultrasound to modify and improve dried fruit and vegetable tissue: a review. Drying Technology 32: 1360–1368. DOI: 10.1080/07373937.2014.916719.10.1080/07373937.2014.916719Abierto DOISearch in Google Scholar

Siucińska K., Konopacka D., Parosa R. 2015. Preservation of highbush blueberry fruit (Vaccinium corymbosum L.) using novel ultrasound assisted drying techniques. In: Proceedings of the International Conference on Food Chemistry and Technology (FCT–2015). 16–18 November, USA, p. 39.Search in Google Scholar

Siucińska K., Konopacka D., Mieszczakowska-Frąc M., Połubok A. 2016a. The effects of ultrasound on quality and nutritional aspects of dried sour cherries during shelf-life. LWT – Food Science and Technology 68: 168–173. DOI: 10.1016/j.lwt.2015.11.055.10.1016/j.lwt.2015.11.055Abierto DOISearch in Google Scholar

Siucińska K., Mieszczakowska-Frąc M., Połubok A., Konopacka D. 2016b. Effects of ultrasound assistance on dehydration processes and bioactive component retention of osmo-dried sour cherries. Journal of Food Science 81(7): C1654–C1661. DOI: 10.1111/1750-3841.13368.10.1111/1750-3841.1336827299365Abierto DOISearch in Google Scholar

Szadzińska J., Kowalski S.J., Stasiak M. 2016. Microwave and ultrasound enhancement of convective drying of strawberries: experimental and modeling efficiency. International Journal of Heat and Mass Transfer 103: 1065–1074. DOI: 10.1016/j.ijheat-masstransfer.2016.08.001.10.1016/j.ijheat-masstransfer.2016.08.001Abierto DOISearch in Google Scholar

Szadzińska J., Łechtańska J., Kowalski S.J., Stasiak M. 2017. The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry 34: 531–539. DOI: 10.1016/j.ultsonch.2016.06.030.10.1016/j.ultsonch.2016.06.03027773279Abierto DOISearch in Google Scholar

The Red Report: The science behind tart cherries. 2012. Cherry Marketing Institute. http://www.choosecherries.com/wp-content/uploads/2014/08/The-Red-Report.pdf (accessed October 24th, 2017)Search in Google Scholar

Wojdyło A., Figiel A., Lech K., Nowicka P., Oszmiański J. 2014b. Effect of convective and vacuum–microwave drying on the bioactive compounds, color, and antioxidant capacity of sour cherries. Food and Bioprocess Technology 7: 829–841. DOI: 10.1007/s11947-013-1130-8.10.1007/s11947-013-1130-8Abierto DOISearch in Google Scholar

Wojdyło A., Nowicka P., Laskowski P., Oszmiański J. 2014a. Evaluation of sour cherry (Prunus cerasus L.) fruits for their polyphenol content, antioxidant properties, and nutritional components. Journal of Agricultural and Food Chemistry 62: 12332–12345. DOI: 10.1021/jf504023z.10.1021/jf504023z25495123Abierto DOISearch in Google Scholar

Zielinska M., Michalska A. 2016. Microwave-assisted drying of blueberry (Vaccinium corymbosum L.) fruits: drying kinetics, polyphenols, anthocyanins, antioxidant capacity, colour and texture. Food Chemistry 212: 671–680. DOI: 10.1016/j.food-chem.2016.06.003.10.1016/j.food-chem.2016.06.003Abierto DOISearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo