Acceso abierto

Sensitivity and uncertainty analysis of a surface runoff model using ensemble of artificial rainfall experiments

 y   
21 nov 2024

Cite
Descargar portada

Armenise, E., Simmons, R.W., Ahn, S., Garbout, A., Doerr, S.H., Mooney, S.J., Sturrock, C.J., Ritz, K., 2018. Soil seal development under simulated rainfall: Structural, physical and hydrological dynamics. J. Hydrol., 556, 211–219. https://doi.org/10.1016/j.jhydrol.2017.10.073 Search in Google Scholar

Baroni, G., Facchi, A., Gandolfi, C., Ortuani, B., Horeschi, D., van Dam, J.C., 2010. Uncertainty in the determination of soil hydraulic parameters and its influence on the performance of two hydrological models of different complexity. Hydrol. Earth Syst. Sci., 14, 251–270. https://doi.org/10.5194/hess-14-251-2010 Search in Google Scholar

Bauer, T., Strauss, P., Grims, M., Kamptner, E., Mansberger, R., Spiegel, H., 2015. Long-term agricultural management effects on surface roughness and consolidation of soils. Soil Till. Res., 151, 28–38. https://doi.org/10.1016/j.still.2015.01.017 Search in Google Scholar

Benke, K.K., Lowell, K.E., Hamilton, A.J., 2008. Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model. Math. Comput. Model., 47, 1134–1149. https://doi.org/10.1016/j.mcm.2007.05.017 Search in Google Scholar

Beven, K., 2012. Rainfall‐Runoff Modelling. Wiley. https://doi.org/10.1002/9781119951001 Search in Google Scholar

Beven, K., Binley, A., 2014. GLUE: 20 years on. Hydrol. Process., 28, 5897–5918. https://doi.org/10.1002/hyp.10082 Search in Google Scholar

Beven, K., Binley, A., 1992. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process., 6, 279–298. https://doi.org/10.1002/hyp.3360060305 Search in Google Scholar

Blasone, R.S., Vrugt, J.A., Madsen, H., Rosbjerg, D., Robinson, B.A., Zyvoloski, G.A., 2008. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov Chain Monte Carlo sampling. Adv. Water Resour., 31, 630–648. https://doi.org/10.1016/j.advwatres.2007.12.003 Search in Google Scholar

Boardman, J., Poesen, J., 2006. Soil Erosion in Europe. John Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/0470859202 Search in Google Scholar

Brunetti, G., Šimůnek, J., Bogena, H., Baatz, R., Huisman, J.A., Dahlke, H., Vereecken, H., 2019. On the information content of cosmic‐ray neutron data in the inverse estimation of soil hydraulic properties. Vadose Zone J., 18, 1–24. https://doi.org/10.2136/vzj2018.06.0123 Search in Google Scholar

Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., Smith, V.H., 1998. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl., 8, 559–568. https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2 Search in Google Scholar

Cho, S.J., Wilcock, P., Gran, K., 2022. Implementing landscape connectivity with topographic filtering model: A simulation of suspended sediment delivery in an agricultural watershed. Sci. Total Environ., 836, 155701. https://doi.org/10.1016/j.scitotenv.2022.155701 Search in Google Scholar

Cluckie, I.D., Xuan, Y., Wang, Y., 2006. Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction. Hydrol. Earth Syst. Sci. Discuss., 3, 3211–3237. https://doi.org/10.5194/hessd-3-3211-2006 Search in Google Scholar

Devátý, J., Beitlerová, H., Lenz, J., 2020. An open rainfall-runoff measurement database. EGU General Assembly 2020. Online. https://doi.org/10.5194/egusphere-egu2020-9148 Search in Google Scholar

Dohnal, M., Vogel, T., Šanda, M., Jelínková, V., 2012. Uncertainty analysis of a dual-continuum model used to simulate subsurface hillslope runoff involving oxygen-18 as natural tracer. J. Hydrol. Hydromech., 60, 194–205. https://doi.org/10.2478/v10098-012-0017-0 Search in Google Scholar

Dostál, T., Váška, J., Vrána, K., 2000. SMODERP — A simulation model of overland flow and erosion processes. Soil Eros., 135–161. https://doi.org/10.1007/978-3-662-04295-3_8 Search in Google Scholar

El Ghoul, I., Sellami, H., Khlifi, S., Vanclooster, M., 2023. Impact of land use land cover changes on flow uncertainty in Siliana watershed of northwestern Tunisia. Catena, 220, 106733. https://doi.org/10.1016/j.catena.2022.106733 Search in Google Scholar

Esteves, M., Faucher, X., Galle, S., Vauclin, M., 2000. Overland flow and infiltration modelling for small plots during unsteady rain: Numerical results versus observed values. J. Hydrol., 228, 265–282. https://doi.org/10.1016/S0022-1694(00)00155-4 Search in Google Scholar

Freer, J., Beven, K., 2000. Bayesian estimation of uncertainty in runoff prediction and the value of data: An application GLUE approach. Water Resour. Res., 32, 2161–2173. Search in Google Scholar

Grayson, R.B., Western, A.W., Chiew, F.H.., 1997. Preferred states in spatial soil moisture patterns. Water Resour. Res., 33, 2897–2908. Search in Google Scholar

Gupta, A., Govindaraju, R.S., 2023. Uncertainty quantification in watershed hydrology: Which method to use? J. Hydrol., 616, 128749. https://doi.org/10.1016/j.jhydrol.2022.128749 Search in Google Scholar

Hantush, M.M., Kalin, L., 2005. Uncertainty and sensitivity analysis of runoff and sediment yield in a small agricultural watershed with KINEROS2. Hydrol. Sci. J., 50. https://doi.org/10.1623/hysj.2005.50.6.1151 Search in Google Scholar

Haruna, S.I., Anderson, S.H., Nkongolo, N. V., Zaibon, S., 2018. Soil hydraulic properties: influence of tillage and cover crops. Pedosphere, 28, 430–442. https://doi.org/10.1016/S1002-0160(17)60387-4 Search in Google Scholar

Holý, M., 1984. Vztahy mezi povrchovým odtokem a transportem živin v povodí vodárenských nádrží (dílčí zpráva výzkumného ústavu VI-4-15/01-03) Prague. (In Czech.) Search in Google Scholar

Jeřábek, J., Zumr, D., Laburda, T., Krása, J., Dostál, T., 2022. Soil surface connectivity of tilled soil with wheel tracks and its development under simulated rainfall. J. Hydrol., 613, 128322. https://doi.org/10.1016/j.jhydrol.2022.128322 Search in Google Scholar

Kavka, P., Jeřábek, J., Landa, M., 2022. SMODERP2D – Sheet and rill runoff routine validation at three scale levels. Water (Switzerland), 14, 327. https://doi.org/10.3390/w14030327 Search in Google Scholar

Kavka, P., Jeřábek, J., Landa, M., Pesek, O., 2024. SMODERP2D - reference manual and user guide [WWW Document]. https://doi.org/https://github.com/storm-fsvcvut/smoderp2d-manual Search in Google Scholar

Kavka, P., Jeřábek, J., Landa, M., Pešek, O., 2023. SMODERP2D - Distributed event-based model for surface and subsurface runoff and erosion [WWW Document]. https://github.com/storm-fsv-cvut/smoderp2d. URL https://github.com/storm-fsv-cvut/smoderp2d Search in Google Scholar

Kavka, P., Strouhal, L., Jáchymová, B., Krása, J., Báčová, M., Laburda, T., Dostál, T., Devátý, J., Bauer, M., 2018. Double size fulljet field rainfall simulator for complex interrill and rill erosion studies. Stavební obzor - Civ. Eng. J., 27, 183–194. https://doi.org/10.14311/cej.2018.02.0015 Search in Google Scholar

Kubát, J.-F., Strouhal, L., Kavka, P., 2024. Estimation of infiltration parameters: The role of pedotransfer functions and initial moisture conditions. J. Hydrol., 633, 130954. https://doi.org/10.1016/j.jhydrol.2024.130954 Search in Google Scholar

Li, T., Jerabek, J., Zumr, D., Noreika, N., Dostal, T., 2021. Assessing spatial soil moisture patterns at a small agricultural catchment. In: 2021 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor). IEEE, pp. 279–284. https://doi.org/10.1109/MetroAgri-For52389.2021.9628588 Search in Google Scholar

Loosvelt, L., Pauwels, V.R.N., Cornelis, W.M., De Lannoy, G.J.M., Verhoest, N.E.C., 2011. Impact of soil hydraulic parameter uncertainty on soil moisture modeling. Water Resour. Res., 47, 1–16. https://doi.org/10.1029/2010WR009204 Search in Google Scholar

Madsen, H., 2000. Automatic calibration of a conceptual rainfall- runoff model using multiple objectives. J. Hydrol., 235, 276–288. https://doi.org/10.1016/S0022-1694(00)00279-1 Search in Google Scholar

Manning, R., 1891. On the flow of water in open channels and pipes. Trans. Inst. Civ. Eng. Irel., 20, 161–207. Search in Google Scholar

Moges, E., Demissie, Y., Larsen, L., Yassin, F., 2021. Review: Sources of hydrological model uncertainties and advances in their analysis. Water (Switzerland), 13, 1, 28. https://doi.org/10.3390/w13010028 Search in Google Scholar

Nanding, N., Rico-Ramirez, M.A., Han, D., Wu, H., Dai, Q., Zhang, J., 2021. Uncertainty assessment of radar-raingauge merged rainfall estimates in river discharge simulations. J. Hydrol., 603, 127093. https://doi.org/10.1016/j.jhydrol.2021.127093 Search in Google Scholar

O’Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from digital elevation data. Comput. Vision, Graph. Image Process., 28, 323–344. https://doi.org/10.1016/S0734-189X(84)80011-0 Search in Google Scholar

Onstad, C.A., Wolfe, M.L., Larson, C.L., Slack, D.C., 1984. Tilled soil subsidence during repeated wetting. Transactions of the ASAE, 27, 3, 0733-0736. https://doi.org/10.13031/2013.32862 Search in Google Scholar

Penna, D., Tromp-van Meerveld, H.J., Gobbi, A., Borga, M., Dalla Fontana, G., 2011. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrol. Earth Syst. Sci., 15, 689–702. https://doi.org/10.5194/hess-15-689-2011 Search in Google Scholar

PHILIP, J.R., 1957. The theory of infiltration. Soil Sci., 83, 345-358. https://doi.org/10.1097/00010694-195705000-00002 Search in Google Scholar

Schübl, M., Brunetti, G., Fuchs, G., Stumpp, C., 2023. Estimating vadose zone water fluxes from soil water monitoring data: a comprehensive field study in Austria. Hydrol. Earth Syst. Sci., 27, 1431–1455. https://doi.org/10.5194/hess-27-1431-2023 Search in Google Scholar

Schwen, A., Bodner, G., Loiskandl, W., 2011. Time-variable soil hydraulic properties in near-surface soil water simulations for different tillage methods. Agric. Water Manag., 99, 42–50. https://doi.org/10.1016/j.agwat.2011.07.020 Search in Google Scholar

Shen, Z.Y., Chen, L., Chen, T., 2012. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: A case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrol. Earth Syst. Sci., 16, 121–132. https://doi.org/10.5194/hess-16-121-2012 Search in Google Scholar

Šimůnek, J., Van Genuchten, M.T., 1996. Estimating unsaturated soil hydraulic properties from tension disc infiltrometer data by numerical inversion. Water Resour. Res., 32, 2683-2696. https://doi.org/10.1029/96WR01525 Search in Google Scholar

Smith, M.W., 2014. Roughness in the Earth sciences. Earth-Science Rev., 136, 202–225. https://doi.org/10.1016/j.earscirev.2014.05.016 Search in Google Scholar

Storn, R., Price, K., 1997. Differential evolution - A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim., 11, 341–359. https://doi.org/10.1023/A:1008202821328 Search in Google Scholar

Turunen, M., Gurarslan, G., Šimůnek, J., Koivusalo, H., 2020. What is the worth of drain discharge and surface runoff data in hydrological simulations? J. Hydrol., 587, 125030. https://doi.org/10.1016/j.jhydrol.2020.125030 Search in Google Scholar

Vigiak, O., Sterk, G., Romanowicz, R.J., Beven, K.J., 2006. A semi-empirical model to assess uncertainty of spatial patterns of erosion. Catena, 66, 198–210. https://doi.org/10.1016/j.catena.2006.01.004 Search in Google Scholar

Villarreal, R., Soracco, C.G., Lozano, L.A., Melani, E.M., Sarli, G.O., 2017. Temporal variation of soil sorptivity under conventional and no-till systems determined by a simple laboratory method. Soil Tillage Res., 168, 92–98. https://doi.org/10.1016/j.still.2016.12.013 Search in Google Scholar

Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., Vijaykumar, A., Bardelli, A. Pietro, Rothberg, A., Hilboll, A., Kloeckner, A., Scopatz, A., Lee, A., Rokem, A., Woods, C.N., Fulton, C., Masson, C., Häggström, C., Fitzgerald, C., Nicholson, D.A., Hagen, D.R., Pasechnik, D. V., Olivetti, E., Martin, E., Wieser, E., Silva, F., Lenders, F., Wilhelm, F., Young, G., Price, G.A., Ingold, G.L., Allen, G.E., Lee, G.R., Audren, H., Probst, I., Dietrich, J.P., Silterra, J., Webber, J.T., Slavič, J., Nothman, J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Cardoso, J.V., Reimer, J., Harrington, J., Rodríguez, J.L.C., Nunez-Iglesias, J., Kuczynski, J., Tritz, K., Thoma, M., Newville, M., Kümmerer, M., Bolingbroke, M., Tartre, M., Pak, M., Smith, N.J., Nowaczyk, N., Shebanov, N., Pavlyk, O., Brodtkorb, P.A., Lee, P., McGibbon, R.T., Feldbauer, R., Lewis, S., Tygier, S., Sievert, S., Vigna, S., Peterson, S., More, S., Pudlik, T., Oshima, T., Pingel, T.J., Robitaille, T.P., Spura, T., Jones, T.R., Cera, T., Leslie, T., Zito, T., Krauss, T., Upadhyay, U., Halchenko, Y.O., Vázquez-Baeza, Y., 2020. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261-272. https://doi.org/10.1038/s41592-019-0686-2 Search in Google Scholar

Vrána, K., Váška, J., Dostál, T., 1996. Smoderp - uživatelský manuál. (in Czech). Search in Google Scholar

Vrugt, J.A., Bouten, W., 2002. Validity of first-order approximations to describe parameter uncertainty in soil hydrologic models. Soil Sci. Soc. Am. J., 66, 1740–1751. https://doi.org/10.2136/sssaj2002.1740 Search in Google Scholar

Vrugt, J.A., ter Braak, C.J.F., Diks, C.G.H., Robinson, B.A., Hyman, J.M., Higdon, D., 2009. Accelerating Markov Chain Monte Carlo simulation by differential evolution with selfadaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul., 10, 273–290. https://doi.org/10.1515/IJNSNS.2009.10.3.273 Search in Google Scholar

Wang, L., Zhang, Y., Jia, J., Zhen, Q., Zhang, X., 2021. Effect of vegetation on the flow pathways of steep hillslopes: Overland flow plot-scale experiments and their implications. Catena, 204, 105438. https://doi.org/10.1016/j.catena.2021.105438 Search in Google Scholar

Zhang, D., Zhang, L., Guan, Y., Chen, Xi, Chen, Xinfang, 2012. Sensitivity analysis of Xinanjiang rainfall-runoff model parameters: A case study in Lianghui, Zhejiang province, China. Hydrol. Res., 43, 123–134. https://doi.org/10.2166/nh.2011.131 Search in Google Scholar

Zhang, W., Cundy, T.W., 1989. Modeling of two-dimensional overland flow. Water Resour. Res., 25, 2019–2035. Search in Google Scholar

Zhou, R., Li, Y., Lu, D., Liu, H., Zhou, H., 2016. An optimization based sampling approach for multiple metrics uncertainty analysis using generalized likelihood uncertainty estimation. J. Hydrol., 540, 274–286. https://doi.org/10.1016/j.jhydrol.2016.06.030 Search in Google Scholar

Zumr, D., Dostál, T., Devátý, J., 2015. Identification of prevailing storm runoff generation mechanisms in an intensively cultivated catchment. J. Hydrol. Hydromech., 63, 246–254. https://doi.org/10.1515/johh-2015-0022 Search in Google Scholar

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Ingeniería, Introducciones y reseñas, Ingeniería, otros