Acceso abierto

Changes in crack width on the surface of heavy soils during drought, determined by precise measurement and calculation


Cite

Almikaeel, W., Čubanová, L., Šoltész, A., 2022. Hydrological drought forecasting using machine learning – Gidra river case study. Water, 14, 3, 387. DOI: 10.3390/w14030387Search in Google Scholar

Amorim, C.L.G., Lopes, R.T., Barroso, R.C., Queiroz, J.C., Alves, D.B., Perez, C.A., Schelin, H.R., 2007. Effect of clay– water interactions on clay swelling by X-ray diffraction. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 580, 1, 768–770.Search in Google Scholar

Baroková, D., Červeňanská, M., Šoltész, A., 2020. Assessment of the impact of proposed cut-off walls on ground-water level regime during extreme hydrological conditions. Acta Hydro-logica Slovaca, 21, 1, 113–122.Search in Google Scholar

Benetin, J., Šoltész, A., Štekauerová, V., 1985. Bilančný matematický model na podrobnú analýzu časovej variability zložiek vodného režimu pôd. Journal of Hydrology and Hydromechanics, 33, 585–609. (In Slovak.)Search in Google Scholar

Beven, K., Germann, P.F., 1982. Macropores and water flow in soils. Wat. Resour. Res., 18, 5, 1311–1325.Search in Google Scholar

Bronswijk, J.J.B., Evers-Vermeer, J.J., 1990. Shrinkage of Dutch clay soil aggregates. Netherlands Journal of Agricultural Science, 38, 175–194.Search in Google Scholar

Bronswijk, J.J.B., 1988. Modeling of water balance, cracking and subsidence of clay soils. J. Hydrol., 97, 199–212.Search in Google Scholar

Bronswijk, J.J.B., 1990. Shrinkage geometry of a heavy clay soil at various stresses. Soil Sci. Soc. Am. J., 54, 1500–1502.Search in Google Scholar

Chen, W.L., Grabowski, R.C., Goel, S., 2022. Clay Swelling: Role of Cations in Stabilizing/ Destabilizing Mechanisms. ACS Omega. 2022 Jan 17; 7, 4, 3185–3191. DOI: 10.1021/acsomega.1c04384. PMID: 35128231; PMCID: PMC8811774.Search in Google Scholar

Chertkov, V.Y., Ravina, I., 1999. Crack tortuosity in swelling clay soils. Int. Agrophysics, 13, 7–13.Search in Google Scholar

Chertkov, V.Y., 2001. The horizontal hydraulic conductivity of interaggregate capillary cracks in clay soils. New letter EGS, Nice, 2001, 123 p.Search in Google Scholar

Chertkov, V.Y., 2002. Modelling cracking stages of saturated soils as they dry and shrink. European Journal of Soil Science, 53, 1, 105–118.Search in Google Scholar

Chertkov, V.Y., Ravina, I., 2011. Effect of interaggregate capillary cracks on the hydraulic conductivity of swelling clay soils. Water Resources Research, 37, 5, 1245–1256.Search in Google Scholar

Cools, N., De Vos, B., 2010. 6th FSCC Interlaboratory Comparison 2009. Rapporten van het Instituut voor Natuur- en Bosonderzoek 2010 (rapportnr. 4). Instituut voor Natuur- en Bosonderzoek, Brussel. Report_Soil_Physical_RT_060510 (inbo.be).Search in Google Scholar

Crescimanno, G., Iovino, M., Provenzano, G., 1995. Influence of salinity and sodicity on soil structural and hydraulic characteristics. Soil Sci. Soc. Am. J., 59, 1701–1708.Search in Google Scholar

Čubanová, L., Šoltész, A., Mydla, J., 2022. Analysis of droughts due to the operation of water structures: Gidra river case study. Pollack Periodica, 17, 1, 111–116. DOI: 10.1556/606.2021.00463Search in Google Scholar

Čurlík, J., Bedrna, Z., 1971. Príspevok k mineralogicko-morfologickému štúdiu illimerizovaných pôd na Východoslovenskej nížine. Vedecké práce VÚPVR, Bratislava, 5. (In Slovak.)Search in Google Scholar

Dane, J.H., Hopmans, J.W., 2002. Pressure plate extractor. In: Dane, J.H., Topp, G.C. (Eds.): Methods of Soil Analysis: Physical Methods, Part 4. Soil Science Society of America, Madison, pp. 688–690.Search in Google Scholar

Doerr, S.H., Ferreira, A.J.D., Walsh, R.P.D., Shakesby, R.A., Leighton‐Boyce, G., Coelho, C.O.A., 2003. Soil water repellency as a potential parameter in rainfall‐runoff modelling: experimental evidence at point to catchment scales from Portugal. Hydrological Processes, 17, 2, 363–377.Search in Google Scholar

Doležal, F., 2001. Remarks to the physics of water movement and solute transport in swelling soils with cracks. In: Proc. Joint Meeting of the CSSS and SSSA, Prague, pp. 265–274.Search in Google Scholar

Đukić, V., Erić, R., Dumbrovsky, M., Sobotkova, V., 2021. Spatio-temporal analysis of remotely sensed and hydrological model soil moisture in the small Jičinka River catchment in Czech Republic. Journal of Hydrology and Hydromechanics, 69, 1, 1–12. https://doi.org/10.2478/johh-2020-0038Search in Google Scholar

Gautam, T.P., 2018. Cohesive soils. In: Bobrowsky, P.T., Marker, B. (Eds): Encyclopedia of Engineering Geology. Encyclopedia of Earth Sciences Series. Springer, Cham. https://doi.org/10.1007/978-3-319-73568-9_60Search in Google Scholar

Gerke, H.H., van Genuchten, M.Th., 1993. A dual porosity model for simulating the prefevential movemoment of water and solutes in structed media. Water Resources Research, 29, 2, 305–319.Search in Google Scholar

Hallett, P.D., Dexter, A.R., Yoshida, S., 2013. A history of understanding crack propagation and the tensile strength of soil. In: Logsdon, S., Berli, M., Horn, R. (Eds.): Quantifying and Modeling Soil Structure Dynamics. Soil Science Society of America. https://doi.org/10.2134/advagricsystmodel3.c5Search in Google Scholar

Hansen, E.L., Hemmen, H., Fonseca, D.D.M., Coutant, C., Knudsen, K.D., Plivelic, T.S., Bonn, D., Fossum, J.O., 2012. Swelling transition of a clay induced by heating. Scientific Reports, 2, 618, 1–4. https://doi.org/10.1038/srep00618Search in Google Scholar

ISO 11274, 1998. Soil Quality - Determination of The Water- Retention Characteristic - Laboratory Methods. International Organization for Standardization, Geneva, Switzerland, 20 p. (webstore.ansi.org/standards/iso/iso112741998).Search in Google Scholar

Jarvis, N.J., 1994. The MACRO Model (Version 3.1) – Technical Description and Sample Simulations. Monograph – Department of Soil Sciences, Swedish University of Agricultural Sciences, Uppsala, 52 p.Search in Google Scholar

Johnston, C.T., 2018. 4–Clay mineral–water interactions. In: Schoonheydt, R., Johnston, C.T., Bergaya, F. (Eds.): Developments in Clay Science, Vol. 9, Elsevier, pp. 89–124. https://doi.org/10.1016/B978-0-08-102432-4.00004-4Search in Google Scholar

Krisnanto, S., Rahardjo, H., Fredlund, D.G., Leong, E.C., 2016. Water content of soil matrix during lateral water flow through cracked soil. Engineering Geology, 210, 168–179. https://doi.org/10.1016/j.enggeo.2016.06.012Search in Google Scholar

Kuban, M., Parajka, J., Tong, R., Greimeister-Pfeil, I., Vreugdenhil, M., Szolgay, J., Kohnova, S., Hlavcova, K., Sleziak, P., Brziak, A., 2022. The effects of satellite soil moisture data on the parametrization of topsoil and root zone soil moisture in a conceptual hydrological model. Journal of Hydrology and Hydromechanics, 70, 3, 295–307. https://doi.org/10.2478/johh-2022-0021Search in Google Scholar

Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in water-shed simulations. Trans. ASABE, 50, 885–900. https://doi.org/10.13031/2013.23153Search in Google Scholar

Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part 1: a discussion of principles. Journal of Hydrology, 10, 282–290.Search in Google Scholar

Novák, V., Šoltész, A., 1994. Infiltration of water into cracked soil. Water and solute. In: Proceedings Wageningen Symposium – Water and solute movement in heavy clay soils for land reclamation and improvement. ILRI, Wageningen, pp. 148–151.Search in Google Scholar

Novák, V., 1978. Vplyv pôdnych puklín na vodný režim ťažkých pôd. Journal of Hydrology and Hydromechanics, 26, 4, 487–492. ISSN 0042-790X. (In Slovak.)Search in Google Scholar

Novák, V., 2000. Charakteristiky pôdy s puklinami: Merná dĺžka puklín na povrchu pôdy. Acta Hydrologica Slovaca, 1, 2, 175–181. (In Slovak.)Search in Google Scholar

Qiu, T., Liu, C., Zhong, X., Zhu, Y., 2020. Experimental research on the impact of temperature on the adhesion characteristics of soil-structure interface. Geofluids, 2020, Article ID 6675576, 9 p. https://doi.org/10.1155/2020/6675576Search in Google Scholar

Richards, L.A., 1931. Capillary conduction of liquids through porous mediums. Physics, 1, 318–333.Search in Google Scholar

Ross, G.J., 1978. Relationships of specific surface area and clay content to shrink – swell potential of soils having different clay mineralogical composition. Canadian Journal Soil Science. 58, 159–166.Search in Google Scholar

Ross, P.J., 1990. Efficient numeral method for infiltration using Richards equation. Water Resources Research, 26, 2, 819–829.Search in Google Scholar

Šimůnek, J., van Genuchten, M.T., Jacques, D., Šejna, M., 2017. Recent developments and applications of the HYDRUS software packages. In: Abstracts of the 5th International Conference HYDRUS Software Applications to Subsurface Flow and Contaminant Transport Problems, Prague, p. 41.Search in Google Scholar

Stewart, R.D., Najm, M.R.A., 2020. Field measurements of soil cracks. Soil Sci. Soc. Am. J., 84, 1462–1476. https://doi.org/10.1002/saj2.20155Search in Google Scholar

Tang, C.-S., Cui, Y.-J., Tang, A.-M., Shi, B., 2010. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Engineering Geology, 114, 261–266.Search in Google Scholar

Tang, C-S., Zhu, C., Cheng, Q., Zeng, H., Xu, J-J., Tian, B-G., Shi, B., 2021. Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors. Earth-Science Reviews, 216, 103586. https://doi.org/10.1016/j.earscirev.2021.103586Search in Google Scholar

Tang, Y., Yang, B., Zhao, X., Yang, C., 2023. Structural and fractal analysis of soil cracks due to the roots of Setaria Viridis. Fractal Fract., 7, 19. https://doi.org/10.3390/fractalfract7010019Search in Google Scholar

van Genuchten, M.Th., Schaap, M.G., Mohanty, B.P., Šimůnek, J., Leij, F.J., 2000. Modelling flow and transport proceses at the local scale. Modelling of transport processes in soils at various scales in time and space. In: International Workshop of Eur. Ag. Engs. Field of Interest on Soil a Water, Leuwen, Belgium, pp. 23–45.Search in Google Scholar

Velde, B., 1995. Composition and mineralogy of clay minerals. In: Velde, B. (Ed.): Origin and Mineralogy of Clays. Springer, New York, pp. 8–42.Search in Google Scholar

Willmott, C.J., 1982. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc., 63, 1309–1313. https://doi.org/10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2.Search in Google Scholar

Zurmuhl, T., Durner, W., 1996. Modelling transient water and solute transport in a biporous soil. Water Resources Research, 32, 819–829.Search in Google Scholar

eISSN:
1338-4333
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other