Acceso abierto

Using feature engineering and machine learning in FAO reference evapotranspiration estimation


Cite

Ahani, A., Mousavi Nadoushani, S.S., 2021. FAO56: Evapotranspiration Based on FAO Penman-Monteith Equation: R package version 0.1.0 [WWW Document]. URL https://CRAN.R-project.org/package=FAO56 (accessed 6.7.2023).Search in Google Scholar

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop evapotranspiration – Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56. FAO, Rome 300, D05109.Search in Google Scholar

Blaney, H.F., Criddle, W.D., 1950. Determining water requirements in irrigated areas from climatological and irrigation data. United States Department of Agriculture, Soil Conservation Service, Washington 25, DC, 48 p.Search in Google Scholar

Breiman, L., 2001. Random forests. Machine Learning, 45, 5–32.Search in Google Scholar

Dimitriadou, S., Nikolakopoulos, K.G., 2022. Multiple linear regression models with limited data for the prediction of reference evapotranspiration of the Peloponnese, Greece. Hydrology, 9, 7, 124. https://doi.org/10.3390/hydrology9070124Search in Google Scholar

Doorenbos, J., Pruitt, W.O., 1977. Crop water requirements. FAO Irrigation and Drainage Paper 24. Land and Water Development Division, FAO, Rome, 144 p.Search in Google Scholar

Dorogush, A.V., Ershov, V., Gulin, A., 2018. CatBoost: gradient boosting with categorical features support. ArXiv preprint arXiv. https://doi.org/https://doi.org/10.48550/arXiv.1810.11363Search in Google Scholar

European Commission, Joint Research Centre. Agri4Cast dataset [WWW Document]. URL https://agri4cast.jrc.ec.europa.eu/dataportal/ (accessed 6.7.2023).Search in Google Scholar

Friedman, J., Hastie, T., Tibshirani, R., Narasimhan, B., Tay, K., Simon, N., 2009. Glmnet: Lasso and elastic-net regularized generalized linear models: R package version 1, 24 p.Search in Google Scholar

Gomes, E.P., Blanco, C.J.C., 2021. Daily rainfall estimates considering seasonality from a MODWT-ANN hybrid model. Journal of Hydrology and Hydromechanics, 69, 13–28. https://doi.org/10.2478/johh-2020-0043Search in Google Scholar

Guo, D., Westra, S., Maier, H.R., 2016. An R package for modelling actual, potential and reference evapotranspiration. Environmental Modelling & Software, 78, 216–224. https://doi.org/10.1016/j.envsoft.2015.12.019Search in Google Scholar

Hargreaves, G.H., Samani, Z.A., 1985. Reference crop evapotranspiration from temperature. Applied Engineering in Agriculture 1, 96–99. https://doi.org/10.13031/2013.26773Search in Google Scholar

Huang, G., Wu, L., Ma, X., Zhang, W., Fan, J., Yu, X., Zeng, W., Zhou, H., 2019. Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. Journal of Hydrology, 574, 1029–1041. https://doi.org/10.1016/j.jhydrol.2019.04.085Search in Google Scholar

H2O.ai, 2022. H2O Documentation: H2O for R Users [WWW Document]. URL https://docs.h2o.ai/h2o/latest-stable/h2odocs/index.html#h2o-package-for-r (accessed 6.7.2023).Search in Google Scholar

Chen, X., Parajka, J., Széles, B., Strauss, P., Blöschl, G., 2020. Controls on event runoff coefficients and recession coefficients for different runoff generation mechanisms identified by three regression methods. Journal of Hydrology and Hydromechanics, 68, 155–169. https://doi.org/10.2478/johh-2020-0008Search in Google Scholar

Karatzoglou, A., Smola, A., Hornik, K., Zeileis, A., 2004. Kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11, 9, 1–20. https://doi.org/10.18637/jss.v011.i09Search in Google Scholar

Klein Tank, A.M.G., Wijngaard, J.B., Können, G.P., Böhm, R., Demarée, G., Gocheva, A., Mileta, M., Pashiardis, S., Hejkrlik, L., Kern-Hansen, C., Heino, R., Bessemoulin, P., Müller-Westermeier, G., Tzanakou, M., Szalai, S., Pálsdóttir, T., Fitzgerald, D., Rubin, S., Capaldo, M., Maugeri, M., Leitass, A., Bukantis, A., Aberfeld, R., van Engelen, A.F.V., Forland, E., Mietus, M., Coelho, F., Mares, C., Razuvaev, V., Nieplova, E., Cegnar, T., Antonio López, J., Dahlström, B., Moberg, A., Kirchhofer, W., Ceylan, A., Pachaliuk, O., Alexander, L.V., Petrovic, P., 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. International Journal of Climatology, 22, 1441–1453. https://doi.org/10.1002/joc.773Search in Google Scholar

Krishnashetty, P.H., Balasangameshwara, J., Sreeman, S., Desai, S., Kantharaju, A.B., 2021. Cognitive computing models for estimation of reference evapotranspiration: A review. Cognitive Systems Research, 70, 109–116. https://doi.org/10.1016/j.cogsys.2021.07.012Search in Google Scholar

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engel-hardt, A., Cooper, T., Mayer, Z., Kenkel, B., 2020. Caret: Classification and Regression Training. R package version 6.0-86.Search in Google Scholar

Liaw, A., Wiener, M., 2015. RandomForest: Breiman and Cutler’s random forests for classification and regression. R package version 4, 14.Search in Google Scholar

Madni, H.A., Umer, M., Ishaq, A., Abuzinadah, N., Saidani, O., Alsubai, S., Hamdi, M., Ashraf, I., 2023. Water-quality prediction based on H2O AutoML and explainable AI techniques. Water, 15, 3, 475. https://doi.org/10.3390/w15030475 Search in Google Scholar

Makkink, G.F., 1957. Testing the Penman formula by means of lysimeters. Journal of the Institution of Water Engineers, 11, 277–288.Search in Google Scholar

McGuinness, J.L., Bordne, E.F., 1972. A comparison of lysimeter-derived potential evapotranspiration with computed values. US Department of Agriculture.Search in Google Scholar

Mehta, R., Pandey, V., 2015. Reference evapotranspiration (ETo) and crop water requirement (ETc) of wheat and maize in Gujarat. Journal of Agrometeorology, 17, 107–113. https://doi.org/10.54386/jam.v17i1.984Search in Google Scholar

Mohammadi, B., Mehdizadeh, S., 2020. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agricultural Water Management, 237, 106145. https://doi.org/10.1016/j.agwat.2020.106145Search in Google Scholar

Montgomery, D.C., Runger, G.C., 2018. Applied Statistics and Probability for Engineers. 7th Ed. John Wiley.Search in Google Scholar

Mostafa, R.R., Kisi, O., Adnan, R.M., Sadeghifar, T., Kuriqi, A., 2023. Modeling potential evapotranspiration by improved machine learning methods using limited climatic data. Water, 15, 3, 486. https://doi.org/10.3390/w15030486Search in Google Scholar

Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A., 2018. CatBoost: unbiased boosting with categorical features: unbiased boosting with categorical features. Advances in Neural Information Processing Systems 31.Search in Google Scholar

R Developement Core Team, 2009. A language and environment for statistical computing. http://www.R-project.org.Search in Google Scholar

Roy, D.K., Sarkar, T.K., Kamar, S.S.A., Goswami, T., Muktadir, M.A., Al-Ghobari, H.M., Alataway, A., Dewidar, A.Z., El-Shafei, A.A., Mattar, M.A., 2022. Daily prediction and multi-step forward forecasting of reference evapotranspiration using LSTM and Bi-LSTM models. Agronomy, 12, 3, 594. https://doi.org/10.3390/agronomy12030594Search in Google Scholar

Sattari, M.T., Apaydin, H., Shamshirband, S., 2020. Performance evaluation of deep learning-based Gated Recurrent Units (GRUs) and tree-based models for estimating ETo by using limited meteorological variables. Mathematics, 8, 972. https://doi.org/10.3390/math8060972Search in Google Scholar

Seifi, A., Riahi, H., 2020. Estimating daily reference evapotranspiration using hybrid gamma test-least square support vector machine, gamma test-ANN, and gamma test-ANFIS models in an arid area of Iran. Journal of Water and Climate Change, 11, 217–240. https://doi.org/10.2166/wcc.2018.003Search in Google Scholar

Silva-Júnior, R.O., Souza-Filho, P.W.M., Salomão, G.N., Tavares, A.L., Santos, J.F., Santos, D.C., Dias, L.C., Silva, M.S., Melo, A.M.Q., Souza-Costa, C.E.A., Rocha, E.J.P., 2021. Response of water balance components to changes in soil use and vegetation cover over three decades in the Eastern Amazon. Frontiers in Water, 3, 749507. https://doi.org/10.3389/frwa.2021.749507Search in Google Scholar

Szalai, S., Nejedlik, P., Štastny, P., Mikulová, K., Szentimrey, T., Bihari, Z., Lakatos, M., 2012. Climate of the Carpathian Region, a project for a high resolution harmonized gridded database. Forum Carpaticum 2012.Search in Google Scholar

Valle Júnior, L.C.G. do, Vourlitis, G.L., Curado, L.F.A., Palácios, R. da S., Nogueira, J. de S., Lobo, F. de A., Islam, A.R.M.T., Rodrigues, T.R., 2021. Evaluation of FAO-56 procedures for estimating reference evapotranspiration using missing climatic data for a Brazilian tropical savanna. Water, 13, 1763. https://doi.org/10.3390/w13131763Search in Google Scholar

Wang, S., Lian, J., Peng, Y., Hu, B., Chen, H., 2019. Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agricultural Water Management, 221, 220–230. https://doi.org/10.1016/j.agwat.2019.03.027Search in Google Scholar

Wright, M.N., Ziegler, A., 2017. Ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77, 1, 1–17. https://doi.org/10.18637/jss.v077.i01Search in Google Scholar

Yeh, H.-F., 2017. Comparison of evapotranspiration methods under limited data. In: Bucur, D. (Ed.): Current Perspective to Predict Actual Evapotranspiration. Intech Open. https://doi.org/10.5772/intechopen.68495Search in Google Scholar

Zambrano-Bigiarini, M., 2022. HydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series 1–77. https://doi.org/10.5281/zenodo.839854Search in Google Scholar

CarpatClim, Deliverable D1.6 [WWW Document]. URL http://www.carpatclim-eu.org/docs/deliverables/D1_6.pdf (accessed 6.7.2023).Search in Google Scholar

eISSN:
1338-4333
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other