Cite

Aggarwal, P.K., Alduchov, O.A., Froehlich, K.O., Araguás-Araguás, L., Sturchio, N.C., Kurita, N., 2012. Stable isotopes in global precipitation: A unified interpretation based on atmospheric moisture residence time. Geoph. Res. Let., 39, L11705. DOI: 10.1029/2012GL051937 Open DOISearch in Google Scholar

Bowen, G.J., Revenaugh, J., 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res., 39, 10, 1299. DOI: 10.1029/2003WR002086 Open DOISearch in Google Scholar

Fourth National Communication of Georgia to the UNFCC (United Nations Framework Convention on Climate Change), 2021. Ministry of Environment Protection and Agriculture of Georgia, Tbilisi, 425 p. Search in Google Scholar

Fritz, P., 1981. River waters. In: Gat, J.R., Gonfiantini, R. (Eds.): Stable Isotopic Hydrology: Deuterium and Oxygen-18 in the Water Cycle. International Atomic Energy Agency, Technical Report Series, 210, pp. 177–201. Search in Google Scholar

Diadin, D., Vystavna, Y., 2020. Long-term meteorological data and isotopic composition in precipitation, surface water and groundwater revealed hydrologic sensitivity to climate change in East Ukraine. Isotopes in Environmental and Health Studies, 56, 2, 136–148. DOI: 10.1080/10256016.2020.1732369 Open DOISearch in Google Scholar

Chitanava, R., 2011. Current status on environmental hydrometeorology monitoring and data processing in Georgia. European Environment Agency national workshop, Tbilisi, Georgia, 2–3 December 2011. Search in Google Scholar

Gat, J.R., Bowser, C.J., Kendall, C., 1994. The contribution of evaporation from the Great Lakes to the continental atmosphere: Estimate based on stable isotope data, Geophys. Res. Lett., 21, 557–560. Search in Google Scholar

Gibson, J.J., Holmes, T., Stadnyk, T.A., Birks, S.J., Eby, P., Pietroniro, A., 2020. 18O and 2H in streamflow across Canada. J. Hydrol.: Reg. Stud., 32, 100754. Search in Google Scholar

Giustini, F., Brilli, M., Patera, A., 2016. Mapping oxygen stable isotopes of precipitation in Italy. J. Hydrol.: Regional Studies, 8, 162–181. Search in Google Scholar

Gourcy, L., Groening, M., Aggarwal, P.K., 2005. Stable oxygen and hydrogen isotopes. In: Aggarwal, P.K., Gat, J.R., Froehlich, K.F. O. (Eds.): Isotopes in the Water Cycle. Past, Present and Future of a Developing Science. Springer, pp. 39–52. Search in Google Scholar

Heydarizad, M., Gimeno, L., Sorí, R., Minaei, F., Mayvan, J.E., 2021a. The stable isotope characteristics of precipitation in the Middle East highlighting the link between the Köppen climate classifications and the 18O and 2H values of precipitation. Water, 2021, 13, 2397. https://doi.org/10.3390/w13172397 Search in Google Scholar

Heydarizad, M., Minaei, M., Ichiyangi, K., Soprí, R., 2021b. The effects of local and regional parameters on the δ18O and δ2H values of precipitation and surface water resources in the Middle East. J. Hydrol., 600, 126485. Search in Google Scholar

Holko, L., Dóša, M., Michalko, J., Kostka, Z., Šanda, M., 2012. Isotopes of oxygen and deuterium in precipitation in Slovakia. J. Hydrol. Hydromech., 60, 4, 265–276. DOI: 10.2478/v10098-012-0023-2 Open DOISearch in Google Scholar

Jouzel, J., Merlivat, L., 1984. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geoph. Res., 89, 11, 749–11, 757. https://doi.org/10.1029/JD089iD07p11749 Search in Google Scholar

Kendall, C., Coplen, T., 2001. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Process., 15, 1363–1393. DOI: 10.1002/hyp.217 Open DOISearch in Google Scholar

Kern, Z., Kohan, B., Leuenberger, M., 2014. Precipitation isoscape of high reliefs: interpolation scheme designed and tested for monthly resolved precipitation oxygen isotope records of an Alpine domain. Atmos. Chem. Phys., 14, 4, 897–1907. DOI: 10.5194/acp-14-1897-2014 Open DOISearch in Google Scholar

Klaus, J., Chun, K.P., Stumpp, C., 2015. Temporal trends in δ18O composition of precipitation in Germany: insights from time series modelling and trend analysis. Hydrol. Process., 29, 2668–2680. DOI: 10.1002/hyp.10395 Open DOISearch in Google Scholar

Koeniger, P., Stumpp, C., Schmidt, A., 2022. Stable isotope patterns of German rivers with aspects on scales, continuity and network status. Isotopes in Environmental and Health Studies, 58, 4–6, 363–379. DOI: 10.1080/10256016.2022.2127702 Open DOISearch in Google Scholar

Mahindawansha, A., Jost, M., Gassmann, M., 2022. Spatial and temporal variations of stable isotopes in precipitation in the Mountainous Region, North Hesse. Water, 14, 3910. https://doi.org/10.3390/w14233910 Search in Google Scholar

Landwehr, J.M., Coplen, T.B., 2006. Line-conditioned excess: a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. In: Proceedings of an International Conference Isotopes in Environmental Studies, 25–29 October 2004. Monaco, IAEA-CN-118/56, pp. 132–135. Search in Google Scholar

Melikadze, G., Jukova, N., Todadze, M., Vepkhvadze, S., Kapanadze, N., Chankvetadze, A., Jimsheladze, T., Vitvar, T., 2014. Evaluation of recharge origin of groundwater in the Alazani-Iori basins, using hydrochemical and isotope approaches. Journal of Georgian Geophysical Society, Issue A, Physics of Solid Earth, 17a, 53–64. Search in Google Scholar

Melikadze, G., Holko, L., Zhukova, N., Todazde, M., Vepkhvadze, S.G., Kapanadze, N.A., Chikadze, T.A., Qadjaia, G.T. 2015. Using Isotope Application for Assessment Water Origin in the Kakheti Region. Journal of the Georgian Geophysical Society, Issue B, Physics of Atmosphere, Ocean and Space Plasma, 18B, 22–32. Search in Google Scholar

Moreno, A., Iglesias, M., Azorin-Molina, C., Pérez-Mejías, C. Bartolomé, M., Sancho, C., Stoll, H., Cacho, I., Frigola, J., Osácar, C., Muñoz, A., Delgado-Huertas, A., Bladé, I., Vimeux, F., 2021. Measurement report: Spatial variability of northern Iberian rainfall stable isotope values – investigating atmospheric controls on daily and monthly timescales. Atmos. Chem. Phys., 21, 10159–10177. https://doi.org/10.5194/acp-21-10159-2021 Search in Google Scholar

Nan, Y., Tian, F., Hu, H., Wang, L., Zhao, S., 2019. Stable isotope composition of river waters across the world. Water, 11, 1760. DOI: 10.3390/w11091760 Open DOISearch in Google Scholar

Putman, A.L., Fiorella, R., P., Bowen, G.J., Cai, Z., 2019. A global perspective on local meteoric water lines: Meta-analytic insight into fundamental controls and practical constraints. Water Resources Research, 55, 8, 6896–6910. https://doi.org/10.1029/2019WR025181 Search in Google Scholar

Rank, D., Wyhlidal, S., Schott, K., Weigand, S., Oblin, A., 2017. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers. Isotopes in Environmental and Health Studies, 54, 2, 115–136. DOI: 10.1080/10256016.2017.1383906 Open DOISearch in Google Scholar

Reckerth, A., Stichler, W., Schmidt, A., Stumpp, C., 2017. Long-term data set analysis of stable isotopic composition in German rivers. J. Hydrol., 552, 718–731. Search in Google Scholar

Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1992. Relation between long-term trends of Oxygen-18 isotope composition of precipitation and climate. Science, 258, 5084, 981–985. Search in Google Scholar

Rozanski, K., Araguás-Araguás, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. In: Swart, P.K., Lohmann, K.C., McKenzie, J., Savin, S. (Eds): Climate Change in Continental Isotopic Records. Geophysics Monograph No. 78. American Geophysical Union, Washington, pp. 1–36. Search in Google Scholar

Sánchez-Murillo, R., Esquivel-Hernández, G., Welsh, K., Brooks, E.S., Boll, J., Alfaro-Solís, R., Valdés-González, J., 2013. Spatial and temporal variation of stable isotopes in precipitation across Costa Rica: An analysis of historic GNIP records. Open Journal of Modern Hydrology, 3, 226–240. http://dx.doi.org/10.4236/ojmh.2013.34027 Search in Google Scholar

Stumpp, C., Klaus, J., Stichler, W., 2014. Analysis of long-term stable isotopic composition in German precipitation. J. Hydrol., 517, 351–361. Search in Google Scholar

Terzer, S., Wassenaar, L.I., Araguás-Araguás, L.J., Aggarwal, P.K., 2013. Global isoscapes for 18O and 2H in precipitation: improved prediction using regionalized climatic regression models. Hydrol. Earth Syst. Sci., 17, 4713–4728. DOI: 10.5194/hess-17-4713-2013 Open DOISearch in Google Scholar

Terzer-Wassmuth, S., Wassenaar, L.I., Welker, J.M., Araguás-Araguáas, L.J., 2021. Improved high-resolution global and regionalized isoscapes of δ18O, δ2H and d-excess in precipitation. Hydrological Processes, 35, 6, e14254. https://doi.org/10.1002/hyp.14254 Search in Google Scholar

Vepkhvadze, S., Melikadze, G., Todadze, M., Malík, P., Gventsadze, A., 2019. Recharge and dynamics of a karst groundwater system in Kakheti (Eastern Georgia). Austrian Journal of Earth Sciences, 112/1, 42–49. DOI: 10.17738/ajes.2019.0003 Open DOISearch in Google Scholar

Vitvar, T., Aggarwal, P.K., Herczeg, A.L., 2007. Global network is launched to monitor isotopes in rivers. Eos. Trans. AGU, 88, 33, 324–326. Search in Google Scholar

UNDP, 2011. Regional Climate Change Impact Study for the South Caucasus Region. Tbilisi, Georgia, 62 p. Search in Google Scholar

Wang, J., Li, W., Wang, Y., Zhang, J., Xiao, S., 2021. Characteristics of stable isotopes in precipitation and their moisture sources in the Guanling region, Guizhou province. J. Chem., 2021, 5569793. https://doi.org/10.1155/2021/5569793 Search in Google Scholar

World Bank, 2006. Drought Management and Mitigation Assessment for Central Asia and the Caucasus, Regional Country profiles and Strategies. 82 p. Search in Google Scholar

Yi, Y., Gibson, J.J., Cooper, L.W., Hélie, J.-F., Birks, S.J., McClelland, J.M., Holmes, R.M., Peterson, B., 2012. Isotopic signals (18O, 2H, 3H) of six major rivers draining the Pan-Arctic watershed. Glob. Biogeochem. Cycles, 26, GB1027. https://doi.org/10.1029/2011GB004159 Search in Google Scholar

Yurtsever, Y., Gat, J.R., 1981. Atmospheric waters. In: Gat, J.R., Gonfiantini, R. (Eds.): Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle. International Atomic Energy Agency, Vienna, pp. 103–139. Search in Google Scholar

Zappa, M., Vitvar, T., Rücker, A., Melikadze, G., Bernhard, L., David, V., Jans-Singh, M., Zhukova, N., Sanda, M., 2015. A Tri-National program for estimating the link between snow resources and hydrological droughts. Proc. IAHS, 369, 25–30. https://doi.org/10.5194/piahs-369-25-2015 Search in Google Scholar

Zhang, M., Wang, S.A., 2016. A review of precipitation isotope studies in China: Basic pattern and hydrological process. J. Geogr. Sci., 26, 7, 921–938. DOI: 10.1007/s11442-016-1307-y Open DOISearch in Google Scholar

eISSN:
1338-4333
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other