Acceso abierto

Managing soil organic matter through biochar application and varying levels of N fertilisation increases the rate of water-stable aggregates formation


Cite

Al-Wabel, M.I., Hussain, Q., Usman, A.R.A., Ahmad, M., Abduljabbar, A., Sallam, A.S., Ok, Y.S., 2018. Impact of biochar properties on soil conditions and agricultural sustainability: A review. Land Degrad. Dev., 29, 2124–2161. Search in Google Scholar

Are, K.S., Adelana, A.O., Fademi, I.O., Aina, O.A., 2017. Improving physical properties of degraded soil: potential of poulry manure and biochar. Agric. Nat. Resour., 51, 454–462. Search in Google Scholar

Bai, N., Zhang, H., Li, S., Zheng, X., Zhang, J., Zhang, H., Zhou, S., Sun, H., Lv, W., 2019. Long-term effects of straw and straw-derived biochar on soil aggregation and fungal community in a rice–wheat rotation system. PeerJ, 6, e6171. Search in Google Scholar

Bai, S.H., Omidvar, N., Gallart, M., Kämper, W., Tahmasbian, I., Farrar, M.B., Singh, K., Zhou, G., Muqadass, B., Xu, Ch.Y., Koech, R., Li, Y., Nguyen, T.T.N., van Zwieten, L., 2022. Combined effects of biochar and fertilizer applications on yield: A review and meta-analysis. Sci. Total Environ., 808, 152073. Search in Google Scholar

Balashov, E., Buchkina, N., Šimanský, V., Horák, J., 2021. Effects of slow and fast pyrolysis biochar on N2O emissions and water availability of sandy and clayey loam soils with high water-filled pore space. J. Hydrol. Hydromech., 69, 467–474. Search in Google Scholar

Balashov, E., Khomyakov, Y., Sushko, S., Rizhiya, E., 2022. Content of adsorbed film water and density of oxygen-containing functional groups on surface of ageing biochar in sandy spodosol. Acta Hort. Regiotec., 25, 115–120. Search in Google Scholar

Blume, H.P., Brümmer, G.W., Fleige, H., Horn, R., Kandeler, E., Kögel-Knabner, I., Kretzschmar, R., Stahr, K., Wilke, B.M., 2016. Soil Science. Springer, Berlin/Heidelberg, Germany, 618 p. Search in Google Scholar

Brodowski, S., John, B., Flessa, H., Amelung, W., 2006. Aggregate-occluded black carbon in soil. Soil Till. Res., 57, 539–46. Search in Google Scholar

Bronick, C.J., Lal, R., 2005. The soil structure and land management: a review. Geoderma, 124, 3–22. Search in Google Scholar

Daquan, S., Lin, Q., Angst, G., Huang, L., Anikó, C., Emsens, W.J., van Diggelen, R., Vicena, J., Cajthaml, T., Frouz, J. 2022. Microbial communities in soil macro-aggregates with less connected networks respire less across successional and geographic gradients. Eur. J. Soil Biol., 108, 103378. Search in Google Scholar

Dziadowiec, H., Gonet, S.S., 1999. Estimation of fractional composition of soil humus by Kononova–Bielcikova‘s method. Methodical guide-book for soil organic matter studies, Prace Komisji Naukowych Polskiego Towarzystwa Naukowego 120: Warszawa, Poland, pp. 31–34. Search in Google Scholar

Edwards, A.P., Bremner, J.M., 1967. Microaggregates in soils. J. Soil Sci., 18, 1, 63–74. Search in Google Scholar

El-Naggar, A., Lee, S.S., Rinkelebe, J., Farooq, M., Song, H., Sarmah, A.K., Zimmerman, A.R., Ahmad, M., Shaheen, S.M., Ok, Y.S., 2019. Biochar application to low fertility soils: a review of current status, and future prospects. Geoderma, 337, 536–554. Search in Google Scholar

Enders, A., Manlei, K., Whitman, T., Joseph, S., Lehmann. J., 2012. Characterization of biochars to evaluate recalcitate and agronomic performance. Bioresour. Technol., 114, 644–53. Search in Google Scholar

European Commission, 2021. New Soil Strategy – healthy soil for a healthy life. Retrieved from https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12634-New-EU-Soil-Strategy-healthy-soil-for-a-healthy-life Search in Google Scholar

Fischer, D., Glaser, B., 2012. Synergisms between compost and biochar for sustainable soil amelioration. In: Kumar, S. (Ed.): Management of Organic Waste. IntechOpen, Rijeka, pp. 167–198. Search in Google Scholar

Foth, H.D., 1990. Fundamentals of Soil Science. JohnWiley & Sons, New York, NY, USA, 360 p. Search in Google Scholar

Gao, L.L., Wang, B.S., Li, S.P., Wu, H.J., Wu, X.P., Liang, G.P., Gong, D.Z., Zhang, X.M., Cai, D.X., Degré, A., 2019. Soil wet aggregate distribution and pore size distribution under different tillage systems after 16 years in the Loess Plateau of China. Catena, 173, 38–47. Search in Google Scholar

Garousi, F., Shan, Z., Ni, K., Yang, H., Shan, J., Cao, J., Jiang, Z., Yang, J., Zhu, T., Müller, C., 2021. Decreased inorganic N supply capacity and turnover in calcareous soil under degraded rubber plantation in the tropical karst region. Geoderma, 381, 114754. Search in Google Scholar

Głąb, T., Palmowska, J., Zaleski, T., Gondek, K., 2016. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma, 281, 11–20. Search in Google Scholar

He, M., Xu, Z., Hou, D., Gao, B., Cao, X., Ok, Y.S., Rinklebe, J., Bolan, N.S., Tsang, D.C.W., 2022. Waste-derived biochar for water pollution control and sustainable development. Nat. Rev. Earth Environ., 3, 444–460. Search in Google Scholar

Horák, J., Šimanský, V., Aydin, E., Igaz, D., Buchkina, N., Balashov, E., 2020. Effects of biochar combined with N-fertilization on Soil CO2 emisssion, crop yields and relationships with soil properties. Pol. J. Environ. Stud., 29, 5, 3597–3609. Search in Google Scholar

Hossain, M.Z., Bahar, M.M., Sarkar, B., Donne, S.W., Ok, Y.S., Palansooriya, K.N., Kirkham, S., Chowdhury, M.B., Bolan, N., 2020. Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2, 379–420. Search in Google Scholar

Hrivňáková, K., Makovníková, J., Barančíková, G., Bezák, P., Bezáková, Z., Dodok, R., Grečo, V., Chlpík, J., Kobza, J., Lištjak, M., Mališ, J., Píš, V., Schlosserová, J., Slávik, O., Styk, J., Širáň, M., 2011. Uniform Methods of Soil Analyses. VÚPOP, Bratislava, Slovakia, 112 p. (In Slovak.) Search in Google Scholar

Igaz, D., Šimanský, V., Horák, J., Kondrlová, E., Domanová, J., Rodný, M., Buchkina, N.P., 2018. Can a single dose of bio-char affect selected soil physical and chemical characteristics? J. Hydrol. Hydromech., 66, 421–428. Search in Google Scholar

IUSS WRB, 2015. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106, FAO, Rome, 112 p. Search in Google Scholar

Jones, D.L., Rousk, J., Edwards-Jones, G., Deluca, T.H., Murphy, D.V., 2012. Biochar mediated changes in soil quality and plant growth in a three year field trial. Soil Biol. Biochem., 45,113–124. Search in Google Scholar

Juriga, M., Aydin, E., Horák, J., Chlpík, J., Rizhiya, E.Y., Buchkina, N.P., Balashov, E.V., Šimanský, V., 2021. The Importance of initial application and reapplication of biochar in the context of soil structure improvement. J. Hydrol. Hydromech., 69, 87–97. Search in Google Scholar

Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorol. Z., 15, 259–263. Search in Google Scholar

Liu, H.Y., Song, C., Zhao, S., Wang, S.G., 2020. Biochar-induced migration of tetracycline and the alteration of microbial community in agricultural soils. Sci. Total Environ. 706, 136086. Search in Google Scholar

Łoginow, W., Wisniewski, W., Gonet, S.S., Ciescinska, B., 1987. Fractionation of organic carbon based on susceptibility to oxidation. Pol. J. Soil Sci., 20, 47–52. Search in Google Scholar

Lukac, M., 2022. Opportunities for carbon sequestration in intensive soft fruit production systems. Acta Hort. Regiotec., 25, 107–114. Search in Google Scholar

Oades, J.M., Waters, A.G., 1991. Aggregate hierarchy in soils. Aust. J. Soil Res., 29, 815–828. Search in Google Scholar

Onweremadu, E.U., Onyia, V.N., Anikwe, M.A.N., 2007. Carbon and nitrogen distribution in water-stable aggregates under two tillage techniques in Fluvisols of Owerri area, southeastern Nigeria. Soil Till. Res., 97, 195–206. Search in Google Scholar

Pardo, M.T., Giampaolo, S., Almendros, G., 1997. Effect of cultivation on physical speciation of humic substances and plant nutrients in aggregate fractions of crusting soil from Zimbabwe. Biol. Fertil. Soils, 25, 95–102. Search in Google Scholar

Rajkai, K., Tóth, B., Barna, G., Hernádi, H., Kocsis, M., Makó, A., 2015. Particle-size and organic matter effects on structure and water retention of soils. Biologia, 70, 1456–1461. Search in Google Scholar

Saravanan, A., Kumar, P.S., 2022. Biochar derived carbonaceous material for various environmental applications: Systematic review. Environ. Res., 214, 113857. Search in Google Scholar

Schacht, K., Marschner, B., 2015. Treated wastewater irrigation effects on soil hydraulic conductivity and aggregate stability of loamy soils in Israel. J. Hydrol. Hydromech. 63, 47–54. Search in Google Scholar

Šimanský, V., Horák, J., Bordoloi, S., 2022. Improving the soil physical properties and relationships between soil properties in arable soils of contrasting texture enhancement using bio-char substrates. Geoderma Reg., 28, e443. Search in Google Scholar

Šimanský, V., Horák, J., Kováčik, P., Bajčan, D., 2017. Carbon sequestration in water-stable aggregates under biochar and biochar with nitrogen fertilization. Bul. J. Agri. Sci., 23, 3, 429–435. Search in Google Scholar

Šimanský, V., Igaz, D., Horák, J., Šurda, P., Kolenčík, M., Buchkina, N.P., Uzarowicz, L., Juriga, M., Šrank, D., Pauková, Ž., 2018. Response of soil organic matter and water-stable aggregates to different biochar treatments including nitrogen fertilization. J. Hydrol. Hydromech., 66, 429–436. Search in Google Scholar

Singh, B.P., Cowie, A.L., 2014. Long-term influence of biochar on native organic carbon mineralisation in a low-carbon clayey soil. Sci. Rep., 4, 3687. Search in Google Scholar

Six, J., Conant, R.T., Paul, E.A., Paustian, K., 2002. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil, 241, 2, 155–176. Search in Google Scholar

Six, J., Elliott, E.T., Paustian, K., 2000. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem., 32, 2099–2103. Search in Google Scholar

Six, J., Bossuyt, H., Degryze, S., Denef, K., 2004. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter Dynamics. Soil Till. Res., 79, 7–31. Search in Google Scholar

Šrank, D., Šimanský, V., 2020. Differences in soil organic matter and humus of sandy soil after application of biochar substrates and combination of biochar substrates with mineral fertilizers. Acta Fytotech. Zootech., 23, 117–124. Search in Google Scholar

Tian, X., Li, Z., Wang, L., Wang, Y., Li, B., Duan, M., Liu, B., 2020. Effects of biochar combined with nitrogen fertilizer reduction on rapeseed yield and soil aggregate stability in upland of purple soils. Int. J. Environ. Res. Public Health, 17, 279. Search in Google Scholar

Tisdall, J.M., Oades J.M., 1982. Organic matter and waterstable aggregates in soils. J. Soil Sci., 33, 141–163. Search in Google Scholar

Veloso, M.G., Angers, D.A., Chantigny, M.H., Bayer, C., 2020. Carbon accumulation and aggregation are mediated by fungi in a subtropical soil under conservation agriculture. Geoderma, 363, 114159. Search in Google Scholar

Yu, X., Wu, C., Fu, Y., Brookes, P.C., Lu, S., 2016. Three-dimensional pore structure and carbon distribution of macroaggregates in biochar-amended soil. Eur. J. Soil Sci., 67, 1, 109–120. Search in Google Scholar

Zheng, X., Xu, W., Dong, J., Yang, T., Shangguan, Z., Qu, J., Li, X., Tan, X., 2022. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. J. Hazard. Mater., 438, 129557. Search in Google Scholar

eISSN:
1338-4333
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other