1. bookVolumen 70 (2022): Edición 4 (December 2022)
Detalles de la revista
Primera edición
28 Mar 2009
Calendario de la edición
4 veces al año
Acceso abierto

Variability of soil properties with fire severity in pine forests and reforested areas under Mediterranean conditions

Publicado en línea: 16 Nov 2022
Volumen & Edición: Volumen 70 (2022) - Edición 4 (December 2022)
Páginas: 462 - 474
Recibido: 11 May 2022
Aceptado: 20 Sep 2022
Detalles de la revista
Primera edición
28 Mar 2009
Calendario de la edición
4 veces al año

Agbeshie, A.A., Abugre, S., Atta-Darkwa, T., Awuah, R., 2022. A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33, 5, 1419–1441.10.1007/s11676-022-01475-4 Search in Google Scholar

Alcañiz, M., Outeiro, L., Francos, M., Úbeda, X., 2018. Effects of prescribed fires on soil properties: A review. Science of the Total Environment, 613, 944–957.10.1016/j.scitotenv.2017.09.14428946382 Search in Google Scholar

Alcañiz, M., Úbeda, X., Cerdà, A., 2020. A 13-Year approach to understand the effect of prescribed fires and livestock grazing on soil chemical properties in Tivissa, NE Iberian Peninsula. Forests, 11, 1013.10.3390/f11091013 Search in Google Scholar

Arocena, J.M., Opio, C., 2003. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma, 113, 1–16.10.1016/S0016-7061(02)00312-9 Search in Google Scholar

Badía, D., López-García, S., Martí, C., Ortíz-Perpiñá, O., Girona-García, A., Casanova-Gascón, J., 2017. Burn effects on soil properties associated to heat transfer under contrasting moisture content. Science of The Total Environment 601–602, 1119–1128. https://doi.org/10.1016/j.scitotenv.2017.05.25410.1016/j.scitotenv.2017.05.25428599368 Search in Google Scholar

Binkley, D., Fisher, R.F., 2019. Ecology and Management of Forest Soils. John Wiley & Sons.10.1002/9781119455745 Search in Google Scholar

Cade-Menun, B.J., Berch, S.M., Preston, C.M., Lavkulich, L.M., 2000. Phosphorus forms and related soil chemistry of Podzolic soils on northern Vancouver Island. II. The effects of clear-cutting and burning. Can. J. For. Res., 30, 1726–1741. https://doi.org/10.1139/x00-09910.1139/x00-099 Search in Google Scholar

Caon, L., Vallejo, V.R., Ritsema, C.J., Geissen, V., 2014. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth-Science Reviews, 139, 47–58.10.1016/j.earscirev.2014.09.001 Search in Google Scholar

Carra, B.G., Bombino, G., Lucas-Borja, M.E., Muscolo, A., Romeo, F., Zema, D.A., 2021. Short-term changes in soil properties after prescribed fire and mulching with fern in Mediterranean forests. Journal of Forestry Research, 33, 1271–1289.10.1007/s11676-021-01431-8 Search in Google Scholar

Cawson, J.G., Sheridan, G.J., Smith, H.G., Lane, P.N.J., 2012. Surface runoff and erosion after prescribed burning and the effect of different fire regimes in forests and shrublands: a review. International Journal of Wildland Fire, 21, 857–872.10.1071/WF11160 Search in Google Scholar

Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia, 143, 1–10.10.1007/s00442-004-1788-815688212 Search in Google Scholar

Cheng, Y., Li, P., Xu, G., Wang, X., Li, Z., Cheng, S., Huang, M., 2021. Effects of dynamic factors of erosion on soil nitrogen and phosphorus loss under freeze-thaw conditions. Geoderma, 390, 114972.10.1016/j.geoderma.2021.114972 Search in Google Scholar

Elliott, K.J., Knoepp, J.D., Vose, J.M., Jackson, W.A., 2013. Interacting effects of wildfire severity and liming on nutrient cycling in a southern Appalachian wilderness area. Plant Soil, 366, 165–183. https://doi.org/10.1007/s11104-012-1416-z10.1007/s11104-012-1416-z Search in Google Scholar

Fernández, C., Fernández-Alonso, J.M., Vega, J.A., 2020. Exploring the effect of hydrological connectivity and soil burn severity on sediment yield after wildfire and mulching. Land Degradation & Development, 31, 1611–1621.10.1002/ldr.3539 Search in Google Scholar

Fernández, C., Vega, J.A., 2016. Modelling the effect of soil burn severity on soil erosion at hillslope scale in the first year following wildfire in NW Spain. Earth Surface Processes and Landforms, 41, 928–935.10.1002/esp.3876 Search in Google Scholar

Fernández-Alonso, J.M., Fernández, C., Arellano, S., Vega, J.A., 2019. Modeling soil burn severity prediction for planning measures to mitigate post wildfire soil erosion in NW Spain. Chapter 27. In: Spatial Modeling in GIS and R for Earth and Environmental Sciences. Elsevier Inc., pp. 589–606. https://doi.org/10.1016/b978-0-12-815226-3.00027-210.1016/B978-0-12-815226-3.00027-2 Search in Google Scholar

Giardina, C.P., Sanford, R.L., Døckersmith, I.C., 2000. Changes in soil phosphorus and nitrogen during slash-and-burn clearing of a dry tropical forest. Soil Science Society of America Journal, 64, 399–405.10.2136/sssaj2000.641399x Search in Google Scholar

Gimeno-García, E., Andreu, V., Rubio, J.L., 2000. Changes in organic matter, nitrogen, phosphorus and cations in soil as a result of fire and water erosion in a Mediterranean landscape. European Journal of Soil Science, 51, 201–210.10.1046/j.1365-2389.2000.00310.x Search in Google Scholar

Giovannini, C., Lucchesi, S., Giachetti, M., 1990. Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil Science, 149, 344–350.10.1097/00010694-199006000-00005 Search in Google Scholar

Giovannini, G., Lucchesi, S., Giachetti, M., 1988. Effect of heating on some physical and chemical parameters related to soil aggregation and erodibility. Soil Science, 146, 255–261.10.1097/00010694-198810000-00006 Search in Google Scholar

Granged, A.J., Jordán, A., Zavala, L.M., Muñoz-Rojas, M., Mataix-Solera, J., 2011a. Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia). Geoderma, 167, 125–134.10.1016/j.geoderma.2011.09.011 Search in Google Scholar

Granged, A.J., Zavala, L.M., Jordán, A., Bárcenas-Moreno, G., 2011b. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: A 3-year study. Geoderma, 164, 85–94.10.1016/j.geoderma.2011.05.017 Search in Google Scholar

Gray, D.M., Dighton, J., 2006. Mineralization of forest litter nutrients by heat and combustion. Soil Biology and Biochemistry, 38, 1469–1477.10.1016/j.soilbio.2005.11.003 Search in Google Scholar

Grogan, P., Burns, T.D., Chapin Iii, F.S., 2000. Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest. Oecologia, 122, 537–544.10.1007/s00442005097728308347 Search in Google Scholar

Inbar, A., Lado, M., Sternberg, M., Tenau, H., Ben-Hur, M., 2014. Forest fire effects on soil chemical and physicochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma, 221, 131–138.10.1016/j.geoderma.2014.01.015 Search in Google Scholar

Jarvis, N., Koestel, J., Messing, I., Moeys, J., Lindahl, A., 2013. Influence of soil, land use and climatic factors on the hydraulic conductivity of soil. Hydrology and Earth System Sciences, 17, 5185–5195.10.5194/hess-17-5185-2013 Search in Google Scholar

Khanna, P.K., Raison, R.J., 1986. Effect of fire intensity on solution chemistry of surface soil under a Eucalyptus pauciflora forest. Soil Res., 24, 423–434. https://doi.org/10.1071/sr986042310.1071/SR9860423 Search in Google Scholar

Kottek, M., Grieser, J., Beck, C., Rudolf, B., Rubel, F., 2006. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15, 3, 259–263.10.1127/0941-2948/2006/0130 Search in Google Scholar

Lee Rodgers, J., Nicewander, W.A., 1988. Thirteen ways to look at the correlation coefficient. The American Statistician, 42, 59–66.10.1080/00031305.1988.10475524 Search in Google Scholar

Lucas-Borja, M.E., Delgado-Baquerizo, M., 2019. Plant diversity and soil stoichiometry regulates the changes in multi-functionality during pine temperate forest secondary succession. Science of The Total Environment, 697, 134204.10.1016/j.scitotenv.2019.13420431491638 Search in Google Scholar

Lucas-Borja, Manuel Esteban, Bombino, G., Carrà, B.G., D’Agostino, D., Denisi, P., Labate, A., Plaza-Alvarez, P.A., Zema, D.A., 2020a. Modeling the soil response to rainstorms after wildfire and prescribed fire in Mediterranean forests. Climate, 8, 150. https://doi.org/10.3390/cli812015010.3390/cli8120150 Search in Google Scholar

Lucas-Borja, Manuel E., Ortega, R., Miralles, I., Plaza-Álvarez, P.A., González-Romero, J., Peña-Molina, E., Moya, D., Zema, D.A., Wagenbrenner, J.W., De las Heras, J., 2020b. Effects of wildfire and logging on soil functionality in the short-term in Pinus halepensis M. forests. European Journal of Forest Research, 139, 935–945.10.1007/s10342-020-01296-2 Search in Google Scholar

Lucas-Borja, M. E., Plaza-Álvarez, P.A., Ortega, R., Miralles, I., González-Romero, J., Sagra, J., Moya, D., Zema, D.A., de las Heras, J., 2020c. Short-term changes in soil functionality after wildfire and straw mulching in a Pinus halepensis M. forest. Forest Ecology and Management, 457, 117700.10.1016/j.foreco.2019.117700 Search in Google Scholar

Lucas-Borja, M.E., Plaza-Àlvarez, P.A., Uddin, S.M., Parhizkar, M., Zema, D.A., 2022. Short-term hydrological response of soil after wildfire in a semi-arid landscape covered by Macrochloa tenacissima (L.) Kunth. Journal of Arid Environments, 198, 104702.10.1016/j.jaridenv.2021.104702 Search in Google Scholar

Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Zavala, L.M., 2011. Fire effects on soil aggregation: a review. Earth-Science Reviews, 109, 44–60.10.1016/j.earscirev.2011.08.002 Search in Google Scholar

Merino, A., Fonturbel, M.T., Fernández, C., Chávez-Vergara, B., García-Oliva, F., Vega, J.A., 2018. Inferring changes in soil organic matter in post-wildfire soil burn severity levels in a temperate climate. Science of the Total Environment, 627, 622–632.10.1016/j.scitotenv.2018.01.18929426186 Search in Google Scholar

Moody, J.A., Shakesby, R.A., Robichaud, P.R., Cannon, S.H., Martin, D.A., 2013. Current research issues related to post-wildfire runoff and erosion processes. Earth-Science Reviews, 122, 10–37.10.1016/j.earscirev.2013.03.004 Search in Google Scholar

Mulvaney, R.L., Bremner, J.M., 1978. Use of p-benzoquinone and hydroquinone for retardation of urea hydrolysis in soils. Soil Biology and Biochemistry, 10, 297–302. https://doi.org/10.1016/0038-0717(78)90026-310.1016/0038-0717(78)90026-3 Search in Google Scholar

Nachtergaele, F., 2001. Soil taxonomy—a basic system of soil classification for making and interpreting soil surveys. Geoderma, 99, 336–337.10.1016/S0016-7061(00)00097-5 Search in Google Scholar

Neary, D.G., Klopatek, C.C., DeBano, L.F., Ffolliott, P.F., 1999. Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 51–71.10.1016/S0378-1127(99)00032-8 Search in Google Scholar

Neris, J., Tejedor, M., Fuentes, J., Jiménez, C., 2013. Infiltration, runoff and soil loss in Andisols affected by forest fire (Canary Islands, Spain). Hydrological Processes, 27, 2814–2824.10.1002/hyp.9403 Search in Google Scholar

Pellegrini, A.F., Ahlström, A., Hobbie, S.E., Reich, P.B., Nieradzik, L.P., Staver, A.C., Scharenbroch, B.C., Jumpponen, A., Anderegg, W.R., Randerson, J.T., 2018. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature, 553, 194–198.10.1038/nature2466829227988 Search in Google Scholar

Pereira, P., Francos, M., Brevik, E.C., Ubeda, X., Bogunovic, I., 2018. Post-fire soil management. Current Opinion in Environmental Science & Health, 5, 26–32. https://doi.org/10.1016/j.coesh.2018.04.00210.1016/j.coesh.2018.04.002 Search in Google Scholar

Qiu, L., Zhu, H., Liu, J., Yao, Y., Wang, X., Rong, G., Zhao, X., Shao, M., Wei, X., 2021. Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment. Agriculture, Ecosystems & Environment, 307, 107232.10.1016/j.agee.2020.107232 Search in Google Scholar

Reyes, O., García-Duro, J., Salgado, J., 2015. Fire affects soil organic matter and the emergence of Pinus radiata seedlings. Annals of Forest Science, 72, 267–275.10.1007/s13595-014-0427-8 Search in Google Scholar

Rivas, Y., Huygens, D., Knicker, H., Godoy, R., Matus, F., Boeckx, P., 2012. Soil nitrogen dynamics three years after a severe Araucaria–Nothofagus forest fire. Austral Ecology, 37, 153–163. https://doi.org/10.1111/j.1442-9993.2011.02258.x10.1111/j.1442-9993.2011.02258.x Search in Google Scholar

Robichaud, P.R., Lewis, S.A., Brown, R.E., Bone, E.D., Brooks, E.S., 2020. Evaluating post-wildfire logging-slash cover treatment to reduce hillslope erosion after salvage logging using ground measurements and remote sensing. Hydrological Processes, 34, 4431–4445. https://doi.org/10.1002/hyp.1388210.1002/hyp.13882 Search in Google Scholar

Rodriguez-Cardona, B.M., Coble, A.A., Wymore, A.S., Kolosov, R., Podgorski, D.C., Zito, P., Spencer, R.G.M., Prokushkin, A.S., McDowell, W.H., 2020. Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams. Scientific Reports, 10, 1–9.10.1038/s41598-020-65520-0725086532457538 Search in Google Scholar

Salis, M., Giudice, L.D., Robichaud, P.R., Ager, A.A., Canu, A., Duce, P., Pellizzaro, G., Ventura, A., Alcasena-Urdiroz, F., Spano, D., Arca, B., Salis, M., Giudice, L.D., Robichaud, P.R., Ager, A.A., Canu, A., Duce, P., Pellizzaro, G., Ventura, A., Alcasena-Urdiroz, F., Spano, D., Arca, B., 2019. Coupling wildfire spread and erosion models to quantify post-fire erosion before and after fuel treatments. Int. J. Wildland Fire, 28, 687–703. https://doi.org/10.1071/WF1903410.1071/WF19034 Search in Google Scholar

Scharenbroch, B.C., Nix, B., Jacobs, K.A., Bowles, M.L., 2012. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma, 183, 80–91.10.1016/j.geoderma.2012.03.010 Search in Google Scholar

Serrasolsas, I., Khanna, P.K., 1995. Changes in heated and autoclaved forest soils of S.E. Australia. II. Phosphorus and phosphatase activity. Biogeochemistry, 29, 25–41. https://doi.org/10.1007/BF0000259210.1007/BF00002592 Search in Google Scholar

Shakesby, R.A., 2011. Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Science Reviews, 105, 71–100.10.1016/j.earscirev.2011.01.001 Search in Google Scholar

Shrestha, B.M., Chen, H.Y.H., 2010. Effects of stand age, wildfire and clearcut harvesting on forest floor in boreal mixedwood forests. Plant Soil, 336, 267–277. https://doi.org/10.1007/s11104-010-0475-210.1007/s11104-010-0475-2 Search in Google Scholar

Smithwick, E.A.H., Turner, M.G., Mack, M.C., Chapin, F.S., 2005. Postfire soil N cycling in northern conifer forests affected by severe, stand-replacing wildfires. Ecosystems, 8, 163–181. https://doi.org/10.1007/s10021-004-0097-810.1007/s10021-004-0097-8 Search in Google Scholar

Soto, B., Diaz-Fierros, F., 1993. Interactions between plant ash leachates and soil. Int. J. Wildland Fire, 3, 207–216. https://doi.org/10.1071/wf993020710.1071/WF9930207 Search in Google Scholar

Turner, M.G., Smithwick, E.A., Metzger, K.L., Tinker, D.B., Romme, W.H., 2007. Inorganic nitrogen availability after severe stand-replacing fire in the Greater Yellowstone ecosystem. Proceedings of the National Academy of Sciences, 104, 4782–4789.10.1073/pnas.0700180104182921517360349 Search in Google Scholar

Úbeda, X., Lorca, M., Outeiro, L.R., Bernia, S., Castellnou, M., Úbeda, X., Lorca, M., Outeiro, L.R., Bernia, S., Castellnou, M., 2005. Effects of prescribed fire on soil quality in Mediterranean grassland (Prades Mountains, north-east Spain). Int. J. Wildland Fire, 14, 379–384. https://doi.org/10.1071/WF0504010.1071/WF05040 Search in Google Scholar

Ulery, A.L., Graham, R.C., Amrhein, C., 1993. Wood-ash composition and soil pH following intense burning. Soil Science, 156, 358–364.10.1097/00010694-199311000-00008 Search in Google Scholar

Valkó, O., Deák, B., Magura, T., Török, P., Kelemen, A., Tóth, K., Horváth, R., Nagy, D.D., Debnár, Z., Zsigrai, G., Kapocsi, I., Tóthmérész, B., 2016. Supporting biodiversity by prescribed burning in grasslands – A multi-taxa approach. Science of the Total Environment, 572, 1377–1384. https://doi.org/10.1016/j.scitotenv.2016.01.18410.1016/j.scitotenv.2016.01.18426852186 Search in Google Scholar

Vega, J.A., Fontúrbel, T., Merino, A., Fernández, C., Ferreiro, A., Jiménez, E., 2013. Testing the ability of visual indicators of soil burn severity to reflect changes in soil chemical and microbial properties in pine forests and shrubland. Plant and Soil, 369, 73–91.10.1007/s11104-012-1532-9 Search in Google Scholar

Wittenberg, L., Malkinson, D., Voogt, A., Leska, D., Argaman, E., Keesstra, S., 2011. The relative importance of soil water repellency in determining runoff-infiltration processes in burned Mediterranean forest soils. In: Proc. FESP III International Meeting of Fire Effects on Soil Properties, p. 110. Search in Google Scholar

Wondafrash, T.T., Sancho, I.M., Miguel, V.G., Serrano, R.E., 2005. Relationship between soil color and temperature in the surface horizon of Mediterranean soils: A laboratory study. Soil Science, 170, 495–503.10.1097/01.ss.0000175341.22540.93 Search in Google Scholar

Zavala, L.M.M., de Celis Silvia, R., López, A.J., 2014. How wildfires affect soil properties. A brief review. Cuadernos de investigación geográfica/Geographical Research Letters, 311–331.10.18172/cig.2522 Search in Google Scholar

Zema, D.A., 2021. Postfire management impacts on soil hydrology. Current Opinion in Environmental Science & Health, 21, 100252. https://doi.org/10.1016/j.coesh.2021.10025210.1016/j.coesh.2021.100252 Search in Google Scholar

Zema, D.A., Carrà, B.G., Lucas-Borja, M.E., 2022. Exploring and modeling the short-term influence of soil properties and covers on hydrology of Mediterranean forests after prescribed fire and mulching. Hydrology, 9, 21. https://doi.org/10.3390/hydrology902002110.3390/hydrology9020021 Search in Google Scholar

Zema, D.A., Nicotra, A., Tamburino, V., Zimbone, S.M., 2015. Performance assessment of collective irrigation in Water Users’ Associations of Calabria (Southern Italy). Irrigation and Drainage, 64, 314–325. https://doi.org/10.1002/ird.190210.1002/ird.1902 Search in Google Scholar

Zema, D.A., Plaza-Alvarez, P.A., Xu, X., Carra, B.G., Lucas-Borja, M.E., 2021a. Influence of forest stand age on soil water repellency and hydraulic conductivity in the Mediterranean environment. Science of the Total Environment, 753, 142006.10.1016/j.scitotenv.2020.14200632890878 Search in Google Scholar

Zema, D.A., Van Stan, J.T., Plaza-Alvarez, P.A., Xu, X., Carra, B.G., Lucas-Borja, M.E., 2021b. Effects of stand composition and soil properties on water repellency and hydraulic conductivity in Mediterranean forests. Ecohydrology, 14, e2276.10.1002/eco.2276 Search in Google Scholar

Zhang, Y., Biswas, A., 2017. The effects of forest fire on soil organic matter and nutrients in boreal forests of North America: a review. In: Rakshit, A., Abhilash, P.C., Singh, H.B., Ghosh, S. (Eds.): Adaptive Soil Management: From Theory to Practices. Springer, pp. 465–476.10.1007/978-981-10-3638-5_21 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo