1. bookVolumen 70 (2022): Edición 4 (December 2022)
Detalles de la revista
Primera edición
28 Mar 2009
Calendario de la edición
4 veces al año
Acceso abierto

Heat–induced changes in soil properties: fires as cause for remobilization of chemical elements

Publicado en línea: 16 Nov 2022
Volumen & Edición: Volumen 70 (2022) - Edición 4 (December 2022)
Páginas: 421 - 431
Recibido: 07 May 2022
Aceptado: 09 Jul 2022
Detalles de la revista
Primera edición
28 Mar 2009
Calendario de la edición
4 veces al año

Aasly, K., Malvik, T.H., Myrhaug, E., 2007. Advanced methods to characterize thermal properties of quartz. Infacon, 11. Search in Google Scholar

Abraham, J., Dowling, K., Florentine, S., 2017. Risk of post-fire metal mobilization into surface water resources: A review. Science of the Total Environment, 599–600, 1740–1755.10.1016/j.scitotenv.2017.05.09628535601 Search in Google Scholar

Albalasmeh, A.A., Berli, M., Shafer, D.S., Ghezzehei, T.A., 2013. Degradation of moist soil aggregates by rapid temperature rise under low intensity fire. Plant and Soil, 362, 1–2, 335–344. https://doi.org/10.1007/S11104-012-1408-Z/FIGURES/5 Search in Google Scholar

Alcañiz, M., Outeiro, L., Francos, M., Úbeda, X., 2018. Effects of prescribed fires on soil properties: A review. Science of the Total Environment, 613–614, 944–957.10.1016/j.scitotenv.2017.09.14428946382 Search in Google Scholar

Araya, S.N., Meding, M., Berhe, A.A., 2016. Thermal alteration of soil physico-chemical properties: a systematic study to infer response of Sierra Nevada climosequence soils to forest fires. Soil, 2, 3, 351–366. https://doi.org/10.5194/soil-2-351-201610.5194/soil-2-351-2016 Search in Google Scholar

Arcenegui, V., Mataix-Solera, J., Guerrero, C., Zornoza, R., Mayoral, A.M., Morales, J., 2007. Factors controlling the water repellency induced by fire in calcareous Mediterranean forest soils. European Journal of Soil Science, 58, 1254–1259.10.1111/j.1365-2389.2007.00917.x Search in Google Scholar

Bigham, J.M., Fitzpatrick, R.W., Schulze, D.G., 2002. Iron Oxides. In: Dixon, J.B., Schulze, D.G. (Eds.): Soil Mineralogy with Environmental Applications. Soil Science Society of America Book Ser. 7. SSSA, Madison, WI. pp. 323–366.10.2136/sssabookser7.c10 Search in Google Scholar

Bogunovic, M., Vidacek, Z., Racz, Z., Husnjak, S., Spaka, M., 2011. Soil suitability map for cultivation, Republic of Croatia. In: Panagos, P., Jones, A., Bosco, C., Kumar, P.S. (Eds.): European digital archive on soil maps (EuDASM): preserving important soil data for public free access. International Journal of Digital Earth, 4, 5, 434–443.10.1080/17538947.2011.596580 Search in Google Scholar

Boski, T., Herbillon, A.J., 1988. Quantitative determination of hematite and goethite in lateritic bauxites by thermodifferential X-ray powder diffraction. Clays and Clay Minerals, 36, 176–180.10.1346/CCMN.1988.0360212 Search in Google Scholar

Burke, M.P., Hogue, T.S., Kinoshita, A.M., Barco, J., Wessel, C., Stein, E.D., 2013. Pre- and post-fire pollutant loads in an urban fringe watershed in Southern California. Environmental Monitoring and Assessment, 185, 10131–10145.10.1007/s10661-013-3318-923912423 Search in Google Scholar

Busenberg, E., Clemency, C.V., 1973. Determination of the cation exchange capacity of clays and soils using an ammonia electrode. Clays and Clay Minerals, 21, 213–217.10.1346/CCMN.1973.0210403 Search in Google Scholar

Campos, I., Abrantes, N., Keizer, J.J., Vale, C., Pereira, P., 2016. Major and trace elements in soils and ashes of eucalypt and pine forest plantations in Portugal following a wildfire. Science of the Total Environment, 572, 1363–1376.10.1016/j.scitotenv.2016.01.19026875605 Search in Google Scholar

Certini, G., 2005. Effects of fire on properties of forest soils: a review. Oecologia, 143, 1–10.10.1007/s00442-004-1788-815688212 Search in Google Scholar

Commission report, 2020. Europe’s nature under threat as world suffers worst year on record for forest fires. https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1995 Search in Google Scholar

Costa, M.R., Calvão A.R., Aranha, J., 2014. Linking wildfire effects on soil and water chemistry of the Marão River watershed, Portugal, and biomass changes detected from Landsat imagery. Applied Geochemistry, 44, 93–102.10.1016/j.apgeochem.2013.09.009 Search in Google Scholar

Deng, Y., Dixon, J.B., 2002. Soil organic matter and organicmineral interactions. In: Dixon, J.B., Schulze, D.G. (Eds.): Soil Mineralogy with Environmental Applications. Soil Science Society of America Book Ser. 7. SSSA, Madison, WI. pp. 69–107.10.2136/sssabookser7.c3 Search in Google Scholar

Duane, A., Aquilué, N., Canelles, Q., Morán-Ordoñez, A., de Cáceres, M., Brotons, L. 2019. Adapting prescribed burns to future climate change in Mediterranean landscapes. Science of the Total Environment, 677, 68–83. https://doi.org/10.1016/J.SCITOTENV.2019.04.34810.1016/j.scitotenv.2019.04.34831051384 Search in Google Scholar

Dupuy, Jl., Fargeon, H., Martin-StPaul, N., Pimont, F., Ruffault, J., Guijarro, M., Hernando, C., Madrigal, J., Fernandes, P., 2020. Climate change impact on future wildfire danger and activity in southern Europe: a review. Annals of Forest Science, 77, 2, 1–24. https://doi.org/10.1007/S13595-020-00933-510.1007/s13595-020-00933-5 Search in Google Scholar

EN ISO 10693, 2014. Soil quality - Determination of carbonate content - Volumetric method (ISO [WWW Document], n.d. URL https://standards.iteh.ai/catalog/standards/cen/822b8ccb-584d-4cd9-8f31-8cdf923f1406/en-iso-10693-2014 Search in Google Scholar

Fernandez-Marcos, M.L., 2022. Potentially toxic substances and associated risks in soils affected by wildfires: A review. Toxics, 10, 1. https://doi.org/10.3390/TOXICS1001003110.3390/toxics10010031877877435051073 Search in Google Scholar

Francos, M., Úbeda, X., Pereira, P., Alcañiz, M., 2018. Long-term impact of wildfire on soils exposed to different fire severities. A case study in Cadiretes Massif (NE Iberian Peninsula). Science of the Total Environment, 615, 664–671.10.1016/j.scitotenv.2017.09.31128992493 Search in Google Scholar

García-Corona, R., Benito, E., de Blas, E., Varela, M.E., 2004. Effects of heating on some soil physical properties related to its hydrological behaviour in two north-western Spanish soils. International Journal of Wildland Fire, 13, 195–199.10.1071/WF03068 Search in Google Scholar

Gedye, S.J., Jones, R.T., Tinner, W., Ammann, B., Oldfield, F., 2000. The use of mineral magnetism in the reconstruction of fire history: a case study from Lago di Origlio, Swiss Alps. Palaeogeography, Palaeoclimatology, Palaeoecology, 164, 101–110.10.1016/S0031-0182(00)00178-4 Search in Google Scholar

Gehring, A.U., Fischer, H., Louvel, M., Kunze, K., Weidler, P.G., 2009. High temperature stability of natural maghemite: a magnetic and spectroscopic study. Geophysical Journal International, 179, 3, 1361–1371.10.1111/j.1365-246X.2009.04348.x Search in Google Scholar

Gray, D.M., Dighton, J., 2009. Nutrient utilization by pine seedlings and soil microbes in oligotrophic pine barrens forest soils subjected to prescribed fire treatment. Soil Biology and Biochemistry, 41, 1957–1965.10.1016/j.soilbio.2009.06.021 Search in Google Scholar

Guo, H., Barnard, A.S., 2013. Naturally occurring iron oxide nanoparticles: morphology, surface chemistry and environmental stability. Journal of Materials Chemistry A, 1, 27–42.10.1039/C2TA00523A Search in Google Scholar

Hajpál, M., Török, Á., 2004. Mineralogical and colour changes of quartz sandstones by heat. Environ. Geol., 46, 311–322.10.1007/s00254-004-1034-z Search in Google Scholar

Ignatavičius, G., Sakalauskienë, G., Oškinis, V., 2006. Influence of land fires on increase of heavy metal concentrations in river waters of Lithuania. Journal of Environmental Engineering and Landscape Management, 14, 1, 46–51, DOI: 10.1080/16486897.2006.9636878 Search in Google Scholar

Inbar, A., Lado, M., Sternberg, M., Tanau, H., Ben-Hur, M., 2014. Forest fire effects on soil chemical and physiochemical properties, infiltration, runoff, and erosion in a semiarid Mediterranean region. Geoderma, 221–221, 131–138.10.1016/j.geoderma.2014.01.015 Search in Google Scholar

Ivanić, M., Vdović, N., Barreto, S. de B., Bermanec, V., Sondi, I., 2015. Mineralogy, surface properties and electrokinetic behaviour of kaolin clays from the naturally occurring pegmatite deposits. Geologia Croatica, 68, 2, 139–145. https://doi.org/10.4154/GC.2015.0910.4154/GC.2015.09 Search in Google Scholar

Kabata-Pendias, A., 2010. Trace Elements in Soils and Plants. 4th Edition, 520 p. https://doi.org/10.1201/B10158/traceelements-soils-plants-alina-kabata-pendias Search in Google Scholar

Kalra, Y.P., 1995. Determination of pH of soils by different methods: collaborative study. Journal of AOAC International, 78, 2, 310–324.10.1093/jaoac/78.2.310 Search in Google Scholar

Ketterings, Q.M., Bigham, J.M., Laperche, V., 2000. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Science Society of America Journal, 64, 1108–1117.10.2136/sssaj2000.6431108x Search in Google Scholar

Li, Y., Zhang, Y., Zhang, Y., Liu, M., Zhang, F., Wang, L., 2017. Thermal behavior analysis of halloysite selected from Inner Mongolia Autonomous Region in China. Journal of Thermal Analysis and Calorimetry, 129, 1333–1339.10.1007/s10973-017-6324-2 Search in Google Scholar

Liu, X.M., Shaw, J., Jiang, J.Z., Bloemendal, J., Hesse, P., Rolph, T., Mao, X.G., 2010. Analysis on variety and characteristics of maghemite. Science China Earth Sciences, 53, 8, 1153–1162. https://doi.org/10.1007/S11430-010-0030-210.1007/s11430-010-0030-2 Search in Google Scholar

Liu, X., Liu, X., Hu, Y., 2015. Investigation of the thermal behaviour and decomposition kinetics of kaolinite. Clay Minerals, 50, 199–209.10.1180/claymin.2015.050.2.04 Search in Google Scholar

Mammucari, R., 2008. Processing of iron oxide nanoparticles by supercritical fluids. Industrial and Engineering Chemistry Research, 47, 599–614.10.1021/ie070494+ Search in Google Scholar

Marcos, E., Tárrega, R., Luis, E., 2007. Changes in a Humic Cambisol heated (100–500 °C) under laboratory conditions: The significance of heating time. Geoderma, 138, 3–4, 237–243. https://doi.org/10.1016/J.GEODERMA.2006.11.01710.1016/j.geoderma.2006.11.017 Search in Google Scholar

Mataix-Solera, J., Zavala, L.M., Jordán, A., Bárcenas-Moreno, G., Lozano, E., Gil-Torres, J., Arcenegui, V., Pérez-Bejarano, A., Morugán-Coronado, A., Jiménez-Pinilla, P., Granged, A.J.P., 2014. Small variations of soil properties control fire-induced water repellency. Spanish Journal of Soil Science, 4, 51–60.10.3232/SJSS.2014.V4.N1.03 Search in Google Scholar

Moore, D.M., Reynolds, R.C.Jr., 1997. X-Ray diffraction and the identification and analysis of clay minerals. 2nd Edition, Oxford University Press, New York. Search in Google Scholar

Moreno, J.M., 2014. Forest fires under climate, social and economic changes in Europe, the Mediterranean and other fire - affected areas of the world. FUME. Lessons learned and outlook (Available from: http://fumeproject.uclm.es) Search in Google Scholar

Moriondo, M., Good, P., Durao, R., Bindi, M., Giannakopoulos, C., Corte-Real, J., 2006. Potential impact of climate change on fire risk in the Mediterranean area. Climate Research, 31, 85–95.10.3354/cr031085 Search in Google Scholar

Namduri, H., Nasrazadani, S., 2008. Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corrosion Science, 50, 2493–2497.10.1016/j.corsci.2008.06.034 Search in Google Scholar

Neary, D.G., Ryan, K.C., Debano, L.F., 2005. Wildland fire in ecosystems: effects of fire on soils and water. Gen. Tech. Rep. RMRS-GTR-42-vol.4. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 250 p.10.2737/RMRS-GTR-42-V4 Search in Google Scholar

Nimac, I., Tadić, M.P., 2016. New 1981–2010 climatological normals for Croatia and comparison to previous 1961–1990 and 1971–2000 normals. Proceedings from GeoMLA conference, Beograd, pp. 79–85. Search in Google Scholar

Odigie, K.O., Khanis, E., Hibdon, S.A., Jana, P., Araneda, A., Urrutia, R., Flega, A.R., 2016. Remobilization of trace elements by forest fire in Patagonia, Chile. Regional Environmental Change, 16, 1089–1096.10.1007/s10113-015-0825-y Search in Google Scholar

Palansooriya, K.N., Shaheen, S.M., Chen, S.S., Tsang, D.C.W., Hashimoto, Y., Hou, D., Bolan, N.S., Rinklebe, J., Ok, Y.S., 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 134, 105046. https://doi.org/10.1016/J.ENVINT.2019.10504610.1016/j.envint.2019.10504631731004 Search in Google Scholar

Pape, A., Switzer, C., McCosh, N., Knapp, C. W., 2015. Impacts of thermal and smouldering remediation on plant growth and soil ecology. Geoderma, 243–244, 1–9. https://doi.org/10.1016/J.GEODERMA.2014.12.00410.1016/j.geoderma.2014.12.004 Search in Google Scholar

Pavlek, K., Bišćević, F., Furčić, P., Grđan, A., Gugić, V., Malešić, N., Moharić, P., Vragović, V., Fuerst-Bjeliš, B., Cvitanović, M., 2016. Spatial patterns and drivers of fire occurrence in a Mediterranean environment: a case study of southern Croatia. Geografisk Tidsskrift – Danish Journal of Geography, 117, 22–35.10.1080/00167223.2016.1266272 Search in Google Scholar

Pereira, P., Úbeda, X., 2010. Spatial distribution of heavy metals released from ashes after a wildfire. Journal of Environmental Engineering and Landscape Management, 18, 13–22.10.3846/jeelm.2010.02 Search in Google Scholar

Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J., Rein, G., 2019. Fire Effects on Soil Properties. CSIRO Publishing.10.1071/9781486308149 Search in Google Scholar

Rauret, G., Lopez-Sanchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., Quevauviller, P.H., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.10.1039/a807854h11529080 Search in Google Scholar

Reynard-Callanan, J.R., Pope, G.A., Gorring, M.L., Feng, H., 2010. Effects of high-intensity forest fires on soil clay mineralogy. Physical Geography, 31, 407–422.10.2747/0272-3646.31.5.407 Search in Google Scholar

Ringdalen, E., 2015. Changes in quartz during heating and the possible effects on Si production. JOM, 67, 484–492.10.1007/s11837-014-1149-y Search in Google Scholar

San-Miguel-Ayanz, J., Durrant, T., Boca, R., Maianti, P., Liberta‘, G., Artes Vivancos, T., Jacome Felix Oom, D., Branco, A., De Rigo, D., Ferrari, D., Pfeiffer, H., Grecchi, R., Nuijten, D., 2022. Advance report on wildfires in Europe, Middle East and North Africa 2021. Publications Office of the European Union, Luxembourg. ISBN 978-92-76-49633-5. DOI:10.2760/039729, JRC128678 Search in Google Scholar

Santín, C., Doerr, S.H., 2016. Fire effects on soils: the human dimension. Philosophical Transactions of the Royal Society B: Biological Sciences, 371, 1696. https://doi.org/10.1098/RSTB.2015.017110.1098/rstb.2015.0171487440927216528 Search in Google Scholar

Schulze, D.G., 2002. An introduction to soil mineralogy. In: Dixon, J.B., Schulze, D.G. (Eds.): Soil Mineralogy with Environmental Applications. Soil Science Society of America Book Ser. 7. SSSA, Madison, WI. pp. 1–35.10.2136/sssabookser7.c1 Search in Google Scholar

Sennett, P., 1989. Changes in the physical properties of kaolin on exposure to elevated temperature. In: Proceedings of the 9th international Clay Conference, Strasbourg, 1989. Vol V: Industrial applications of clays. Analytical techniques and teaching of clay mineralogy. Strasbourg: Institut de Géologie – Université Louis-Pasteur, 1990. pp. 71–79. (Sciences Géologiques. Mémoire, 89). Search in Google Scholar

Sidhu, P.S., 1988. Transformation of trace element-substituted maghemite to hematite. Clays Clay Miner. 36, 31–38. https://doi.org/10.1346/CCMN.1988.036010510.1346/CCMN.1988.0360105 Search in Google Scholar

Shepard, F.P., 1954. Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Research, 24, 151–158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D10.1306/D4269774-2B26-11D7-8648000102C1865D Search in Google Scholar

Soto, B., Benito, E., Diaz-Fierros, F., 1991. Heat-induced degradation processes in forest soils. International Journal of Wildland Fire, 1, 3, 147–152. https://doi.org/10.1071/WF991014710.1071/WF9910147 Search in Google Scholar

Soto, B., Diaz-Fierros, F., 1993. Interactions between plant ash leachates and soil. International Journal of Wildland Fire, 3, 4, 207–216.10.1071/WF9930207 Search in Google Scholar

Šiljković, Ž., Mamut, M., 2016. Forest fires in Dalmatia. Bulletin of Geography. Socio–Economic Series, 32, 117–130.10.1515/bog-2016-0019 Search in Google Scholar

Tekić, I., Fuerst-Bjeliš, B., Durbešić, A., 2014. Distribution of Aleppo pine (Pinus halepensis Mill.) and its effect on vegetation and landscape structure of wider area of Šibenik. Šumarski list, 138, 11–12, 593–600. (In Croatian.) Search in Google Scholar

Thomaz, E.L., Fachin, P.A., 2014. Effects of heating on soil physical properties by using realistic peak temperature gradients. Geoderma, 230–231, 243–249. https://doi.org/10.1016/J.GEODERMA.2014.04.02510.1016/j.geoderma.2014.04.025 Search in Google Scholar

Úbeda, X., Pereira, P., Outeiro, L., Martin, D.A., 2009. Effects of fire temperature on the physical and chemical characteristics of the ash from two plots of cork oak (Quercus suber). Land Degradation & Development, 20, 589–608.10.1002/ldr.930 Search in Google Scholar

Úbeda, X., Sarricolea, P., 2016. Wildfires in Chile: a review. Global and Planetary Change, 146, 152–161.10.1016/j.gloplacha.2016.10.004 Search in Google Scholar

Ulery, A.L., Graham, R.C., Bowen, L.H., 1996. Forest fire effects on soil phyllosilicates in California. Soil Science Society of America Journal, 60, 309–315.10.2136/sssaj1996.03615995006000010047x Search in Google Scholar

Ulery, A.L., Graham, R.C., Goforth, B.R., Hubbert, K.R., 2017. Fire effects on cation exchange capacity of California forest and woodland soils. Geoderma, 286, 125–130.10.1016/j.geoderma.2016.10.028 Search in Google Scholar

Vassiliadou, I., Papadopoulos, A., Costopoulou, D., Vasiliadou, S., Christoforou, S., Leondiadis, L., 2009. Dioxin contamination after an accidental fire in the municipal landfill of Tagarades, Thessaloniki, Greece. Chemosphere, 74, 879–884.10.1016/j.chemosphere.2008.11.01619101012 Search in Google Scholar

Wang, X., Wang, J., Zhang, J., 2012. Comparisons of three methods for organic and inorganic carbon in calcareous soils of northwestern China. PLoS ONE, 7, 8, e44334.10.1371/journal.pone.0044334343212522952957 Search in Google Scholar

Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 30, 377–392.10.1086/622910 Search in Google Scholar

Yoon, J., Cao, X., Zhou, Q., Ma, L.Q., 2006. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 2–3, 456–464. https://doi.org/10.1016/J.SCITOTENV.2006.01.01610.1016/j.scitotenv.2006.01.01616600337 Search in Google Scholar

Yuan, P., Tan, D., Annabi-Bergaya, F., Yan, W., Fan, M., Liu, D., He, H., 2012. Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating. Clays and Clay Minerals, 60, 561–573.10.1346/CCMN.2012.0600602 Search in Google Scholar

Zobnin, N.N., Torgovets, A.K., Pikalova, I.A., Yussupova, Y.S., Atakishiyev, S.A., 2018. Influence of thermal stability of quartz and the particle size distribution of burden materials on the process of electrothermal smelting of metallurgical silicon. Oriental Journal of Chemistry, 34, 2, 1120–1125. https://doi.org/10.13005/OJC/34026510.13005/ojc/340265 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo