Acceso abierto

The Wavelets show it – the transit time of water varies in time


Cite

Benettin, P., Bailey, S.W., Campbell, J.L., Green, M.B., Rinaldo, A., Likens, G.E., McGuire, K.J., Botter, G., 2015a. Linking water age and solute dynamics in stream- flow at the Hubbard Brook Experimental Forest, NH, USA. Water Resources Research, 5111, 9256-9272. http://doi.org/10.1002/2015WR01755210.1002/2015WR017552Open DOISearch in Google Scholar

Benettin, P., Kirchner, J.W., Rinaldo, A., Botter, G., 2015b. Modeling chloride transport using travel time distributions at Plynlimon, Wales. Water Resources Research, 515, 3259-3276. http://doi.org/10.1002/2014WR01660010.1002/2014WR016600Open DOISearch in Google Scholar

Botter, G., Bertuzzo, E., Rinaldo, A., 2011. Catchment residence and travel time distributions: The master equation. Geophysical Research Letters, 3811. http://doi.org/10.1029/2011GL04766610.1029/2011GL047666Open DOISearch in Google Scholar

Davies, J., Beven, K., Rodhe, A., Nyberg, L., Bishop, K., 2013. Integrated modeling of flow and residence times at the catchment scale with multiple interacting pathways. Water Resour. Res., 49, 4738-4750. http://doi.org/10.1002/wrcr.2037710.1002/wrcr.20377Open DOISearch in Google Scholar

Duffy, C.J., Gelhar, L.W., 1985. Frequency domain approach to water quality modeling in groundwater: theory. Water Resources Research, 21, 1175-1184.10.1029/WR021i008p01175Open DOISearch in Google Scholar

Dunn, S.M., McDonnell, J.J., Vaché, K.B., 2007. Factors influencing the residence time of catchment waters: A virtual experiment approach. Water Resources Research, 43, W06408. DOI: 10.1029/2006WR005393.10.1029/2006WR005393Open DOISearch in Google Scholar

Farge, M., 1992. Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech., 24, 395-457.10.1146/annurev.fl.24.010192.002143Open DOISearch in Google Scholar

Gomez, J.D., Wilson, J.L., 2013. Age distributions and dynamically changing hydrologic systems: Exploring topographydriven flow. Water Resour. Res., 49, 1503-1522. DOI: 10.1002/wrcr.20127.10.1002/wrcr.20127Open DOISearch in Google Scholar

Grinsted, A., Moore, J.C., Jevrejeva, S., 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, European Geosciences Union EGU, 11 5/6, 561-566.10.5194/npg-11-561-2004Open DOISearch in Google Scholar

Harman, C.J., 2015. Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of chloride in a watershed. Water Resour. Res., 51, 1, 1-30. DOI: 10.1002/2014WR015707.10.1002/2014WR015707Open DOISearch in Google Scholar

Harman, C., Kim, M., 2014. An efficient tracer test for timevariable transit time distributions in periodic hydrodynamic systems. Geophysical Research Letters, 415, 1567-1575. http://doi.org/10.1002/2013GL05898010.1002/2013GL058980Open DOISearch in Google Scholar

Heidbüchel, I., Troch, P.A., Lyon, S.W., Weiler, M., 2012. The master transit time distribution of variable flow systems. Water Resour. Res., 48, W06520. DOI: 10.1029/2011WR011293.10.1029/2011WR011293Open DOISearch in Google Scholar

Hrachowitz, M., Soulsby, C., Tetzlaff, D., Dawson, J.J.C., Dunn, 2009. Using long-term data sets to understand transit times in contrasting headwater catchments. Journal of Hydrology, 367, 3, 237-248.10.1016/j.jhydrol.2009.01.001Search in Google Scholar

Hrachowitz, M., Soulsby, C., Tetzlaff, D., Speed, M., 2010. Catchment transit times and landscape controls - does scale matter? Hydrological Processes, 24, 117-125.10.1002/hyp.7510Open DOISearch in Google Scholar

Hrachowitz, M., Fovet, O., Ruiz, L., Savenije, H.H.G., 2015. Transit time distributions, legacy contamination and variability in biogeochemical 1/f scaling: how are hydrological response dynamics linked to water quality at the catchment scale? Hydrological Processes, 29, 25, 5241-5256. http://doi.org/10.1002/hyp.1054610.1002/hyp.10546Open DOISearch in Google Scholar

Kirchner, J.W., Feng, X., Neal, C., 2000. Fractal stream and its implications for contaminant transport in catchments. Nature, 403, 524-527.10.1038/35000537Search in Google Scholar

Kirchner, J.W., Feng, X., Neal, C., 2001. Catchment-scale advection and dispersion as a mechanism for fractal scaling in stream tracer concentrations. Journal of Hydrology, 254, 82-101.10.1016/S0022-1694(01)00487-5Search in Google Scholar

Kirchner, J.W., 2016. Aggregation in environmental systems - Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrol. Earth Syst. Sci., 20, 279-297.10.5194/hess-20-279-2016Search in Google Scholar

Klaus, J., Chun, K.P., McGuire, K.J., McDonnell, J.J., 2015. Temporal dynamics of catchment transit times from stable isotope data. Water Resources Research, 516, 4208-4223. http://doi.org/10.1002/2014WR01624710.1002/2014WR016247Open DOISearch in Google Scholar

Maloszewski, P., Zuber, A., 1983. Interpretation of artificial and environmental tracers in fissured rocks with a porous matrix, Report No. 1221/AP, Inst. Nucl. Phys., Krakow, Poland.Search in Google Scholar

McDonnell, J. J., McGuire, K., Aggarwal, P., Beven, K. J., Biondi, D., Destouni, G., Dunn, S., James, A., Kirchner, J., Kraft, P., Lyon, S., Maloszewski, P., Newman, B., Pfister, L., Rinaldo, A., Rodhe, A., Sayama, T., Seibert, J., Solomon, K., Soulsby, C., Stewart, M., Tetzlaff, D., Tobin, C., Troch, P., Weiler, M., Western, A., Worman, A., Wrede, S. 2010. How old is streamwater?: Open questions in catchment transit time conceptualization, modelling and analysis. Hydrological Processes, 24, 12, 1745-1754.10.1002/hyp.7796Open DOISearch in Google Scholar

McGuire, K.J., McDonnell, J.J., 2006. A review and evaluation of catchment transit time modeling. Journal of Hydrology, 330, 543-563.10.1016/j.jhydrol.2006.04.020Search in Google Scholar

McGuire, K.J., DeWalle, D.R., Gburek, W.J., 2002. Evaluation of mean residence time in subsurface waters using oxygen- 18 fluctuations during drought conditions in the mid- Appalachians. Journal of Hydrology, 261, 132-149.10.1016/S0022-1694(02)00006-9Search in Google Scholar

McGuire, K.J., McDonnell, J.J., Weiler, M., Kendall, C., McGlynn, B.L., Welker, J.M., Seibert, J., 2005. The role of topography on catchment-scale water residence time. Water Resources Research, 41, 5. DOI: 10.1029/2004WR003657.10.1029/2004WR003657Open DOISearch in Google Scholar

McMillan, H., Tetzlaff, D., Clark, M., Soulsby, C., 2012. Do time-variable tracers aid the evaluation of hydrological model structure? A multi model approach. Water Resources Research, 485. http://doi.org/10.1029/2011WR01168810.1029/2011WR011688Open DOISearch in Google Scholar

Neal, C., 1997. A view of water quality from the Plynlimon watershed. Hydrology and Earth Systems Sciences, 13, 743-753.10.5194/hess-1-743-1997Search in Google Scholar

Neal, C., Reynolds, B., Norris, D., Kirchner, J.W., Neal, M., Rowland, P., Wickham, H., Harman, S., Armstrong, L., Sleep, D., Lawlor, A., Woods, C., Williams, B., Fry, M., Newton, G., Wright, D., 2011. Three decades of water quality measurements from the Upper Severn experimental catchments at Plynlimon, Wales: an openly accessible data resource for research, modelling, environmental management and education. Hydrological Processes, 25, 3818-3830. DOI: 10.1002/hyp.8191.10.1002/hyp.8191Open DOISearch in Google Scholar

Neal, C., Kirchner, J., Reynolds, B., 2013. Plynlimon research catchment hydrochemistry. NERC Environmental Information Data Centre 10.5285/44095e17-43b0-45d4-a781- aab4f72da025Search in Google Scholar

Onderka, M., Wrede, S., Rodný, M., Pfister, L., Hoffmann, L., Krein, A., 2012. Hydrogeologic and landscape controls of dissolved inorganic nitrogen DIN and dissolved silica DSi fluxes in heterogeneous catchments. Journal of Hydrology, 450-451, 36-47.10.1016/j.jhydrol.2012.05.035Search in Google Scholar

Onderka, M., Banzhaf, S., Scheytt, T.J., Krein, A., 2013. Seepage velocities derived from thermal records using wavelet analysis. Journal of Hydrology, 479, 64-7410.1016/j.jhydrol.2012.11.022Search in Google Scholar

Soulsby, C., Birkel, C., Tetzlaff, D., 2014. Assessing urbanization impacts on catchment transit times. Geophysical Research Letters, 412, 442-448. http://doi.org/10.1002/2013GL05871610.1002/2013GL058716Open DOISearch in Google Scholar

Soulsby, C., Birkel, C., Geris, J., Dick, J., Tunaley, C., Tetzlaff, D., 2015. Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity: Modeling with high-resolution isotope data. Water Resources Research, 519, 7759-7776. http://doi.org/10.1002/2015WR01788810.1002/2015WR017888494955027478255Open DOISearch in Google Scholar

Tekleab, S., Wenninger, J., Uhlenbrook, S., 2014. Characterisation of stable isotopes to identify residence times and runoff components in two meso-scale catchments in the Abay/Upper Blue Nile basin, Ethiopia. Hydrol. Earth Syst. Sci., 18, 2415-2431.10.5194/hess-18-2415-2014Open DOISearch in Google Scholar

Torrence, C., Compo, G.P., 1998. A Practical Guide to Wavelet Analysis. Bull. Amer. Meteor. Soc., 79, pp. 61-78. van der Velde, Y., Torfs, P.J.J.F., van der Zee, S.E.A.T.M., Uijlenhoet, R., 2012. Quantifying catchment-scale mixing and its effect on time-varying travel time distributions. Water Resources Research, 48, 6. DOI: 10.1029/2011WR011310. van der Velde, Y., Heidbüchel, I., Lyon, S.W., Nyberg, L., Rodhe, A., Bishop, K., Troch, P.A., 2015. Consequences of mixing assumptions for time-variable travel time distributions. Hydrological Processes, 29, 16, 3460-3474. http://doi.org/10.1002/hyp.1037210.1029/2011WR011310..........2015.-.29163460-3474.http://doi.org/10.1002/hyp.10372Open DOISearch in Google Scholar

Weigand, S., Bol, R., Reichert, B., Graf, A., Wiekenkamp, I., Stockinger, M., Luecke, A., Tappe, W., Bogena, H., Puetz, P., Amelung, W., Vereecken, H., 2017. Spatiotemporal analysis of dissolved organic carbon and nitrate in waters of a forested catchment using wavelet analysis. Vadose Zone Journal. DOI: 10.2136/vzj2016.09.0077.10.2136/vzj2016.09.0077Open DOISearch in Google Scholar

White, R.E., 1987. A transfer function model for the prediction of nitrate leaching under field conditions. Journal of Hydrology, 92, 207-222.10.1016/0022-1694(87)90014-XOpen DOISearch in Google Scholar

eISSN:
0042-790X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other