Acceso abierto

Numerical investigation of solid-liquid slurry flow through an upward-facing step


Cite

Badr, H.M., Habib, M.A., Ben-Mansour, R., Said, S.A.M., 2005. Numerical investigation of erosion threshold velocity in a pipe with sudden contraction. Computers and Fluids, 34, 721-742.10.1016/j.compfluid.2004.05.010Search in Google Scholar

Badr, H.M., Habib, M.A., Ben-Mansour, R., Said, S.A.M., 2008. Erosion and penetration rates of a pipe protruded in a sudden contraction. Computers and Fluids, 37, 146-160.10.1016/j.compfluid.2007.05.002Search in Google Scholar

Chen, L., Duan, Y., Pu, W., Zhao, C., 2009. CFD simulation of coal-water slurry flowing in horizontal pipelines. Korean J. Chem. Eng., 26, 1144-1154.10.1007/s11814-009-0190-ySearch in Google Scholar

Clift, R., Grace, J.R., Weber, M.E., 1978. Bubbles, Drops and Particles. Academic Press, London.Search in Google Scholar

Doron, P., Barnea, D., 1996. Flow pattern maps for solid-liquid flow in pipes. Int. J. Multiphase Flow, 22, 273-283.10.1016/0301-9322(95)00071-2Search in Google Scholar

Doron, P., Granica, D., Barnea, D., 1987. Slurry flow in horizontal pipes - experimental and modeling. Int. J. Multiphase Flow, 13, 535-547.10.1016/0301-9322(87)90020-6Search in Google Scholar

Duz, H., 2007. Theoretical Analysis of Sudden Expansion Fittings in Pneumatic Conveying System. M.Sc. Thesis, University of Gaziantep, Gaziantep, Turkey.Search in Google Scholar

Enwald, H., Peirano, E., Almstedt, A.E., 1996. Eulerian twophase flow theory applied to fluidization. Int. J. Multiphase Flow, 22, 21-66.10.1016/S0301-9322(96)90004-XSearch in Google Scholar

Erdal, A., Anderssont, H.I., 1997. Numerical aspects of flow computation through orifices. Flow Meas. Instrum., 8, 27- -37.10.1016/S0955-5986(97)00017-4Search in Google Scholar

Fessler, J.R., Eaton, K.E., 1997. Particle response in a planar sudden expansion flow. Exp. Thermal and Fluid Science, 15, 413-423.10.1016/S0894-1777(97)00010-1Search in Google Scholar

Founti, M., Klipfel, A., 1998. Experimental and computational investigations of nearly dense two-phase sudden expansion flows. Exp. Thermal and Fluid Science, 17, 27-36.10.1016/S0894-1777(97)10046-2Search in Google Scholar

Frawley, P., O’Mahony, A.P., Geron, M., 2010. Comparison of Lagrangian and Eulerian simulations of slurry flows in a sudden expansion. ASME J. Fluids Eng., 132, 9, 191-301.10.1115/1.4002357Search in Google Scholar

Gillies, R.G., Shook, C.A., Xu, J., 2004. Modelling heterogeneous slurry flows at high velocities. Can. J. Chem. Eng., 82, 1060-1065.10.1002/cjce.5450820523Search in Google Scholar

Habib, M.A., Badr, H.M., Ben-Mansour, R., Said, S.A.M., 2004. Numerical calculations of erosion in an abrupt pipe contraction of different contraction ratios. Int. J. Num. Methods Fluids, 46, 19-35.10.1002/fld.744Search in Google Scholar

Habib, M.A., Badr, H.M., Ben-Mansour, R., Kabir, M.E., 2007. Erosion rate correlations of a pipe protruded in an abrupt pipe contraction. Int. J. Impact Eng., 34, 1350-1369.10.1016/j.ijimpeng.2006.07.007Search in Google Scholar

Ishii, M., Mishima, K., 1984. Two-fluid model and hydrodynamic constitutive relations. Nuclear Engineering and Design, 82, 107-126.10.1016/0029-5493(84)90207-3Search in Google Scholar

Kaushal, D.R., Tomita, Y., 2003. Comparative study of pressure drop in multisized particulate slurry flow through pipe and rectangular duct. Int. J. Multiphase Flow, 29, 1473- -1487.10.1016/S0301-9322(03)00125-3Search in Google Scholar

Kaushal, D.R., Sato, K., Toyota, T., Funatsu, K., Tomita, Y., 2005. Effect of particle size distribution on pressure drop and concentration profile in pipeline flow of highly concentrated slurry. Int. J. Multiphase Flow, 31, 809-823.10.1016/j.ijmultiphaseflow.2005.03.003Search in Google Scholar

Koronaki, E.D., Liakos, H.H., Founti, M.A., Markatos, N.C., 2001. Numerical study of turbulent diesel flow in a pipe with sudden expansion. Appl. Math. Mod., 25, 319-333.10.1016/S0307-904X(00)00055-XSearch in Google Scholar

Lahiri, S.K., Ghanta, K.C., 2010. Slurry flow modeling by CFD. Chem. Ind. & Chem. Eng. Quarterly, 16, 295-308.10.2298/CICEQ091030031LSearch in Google Scholar

Launder, B.E., Spalding, D.B., 1972. Mathematical Models of Turbulence. Academic Press, London.Search in Google Scholar

Lin, C.X., Ebadian, M.A., 2008. A numerical study of developing slurry flow in the entrance region of a horizontal pipe. Computers and Fluids, 37, 965-974.10.1016/j.compfluid.2007.10.008Search in Google Scholar

Ling, J., Skudarnov, P.V., Lin, C.X., Ebadian, M.A., 2003. Numerical investigations of solid-liquid slurry flows in a fully developed flow region. Int. J. Heat and Fluid Flow, 24, 389-398.10.1016/S0142-727X(03)00018-3Search in Google Scholar

Marjoanovic, P., Levy, A., Mason, D.J., 1999. An investigation of the flow structure through abrupt enlargement of circular pipe. Powder Technology, 104, 296-303.10.1016/S0032-5910(99)00107-2Search in Google Scholar

Matousek, V., 2000. Concentration distribution in pipeline flow of sand-water mixtures. J. Hydrol. Hydromech. 48, 180-196.Search in Google Scholar

Messa, G.V., Malavasi, S., 2012. Solid-liquid slurry flow through an upward-facing step. In: Atti del XXXIII Convegno Nazionale di Idraulica e Costruzioni Idrauliche IDRA12 (CD-ROM), Università degli Studi di Brescia, Brescia, Italy, 10-15 September 2012.Search in Google Scholar

Mohanarangam, K., Tu, T.J., 2009. Numerical study of particle turbulence interaction in liquid-particle flows. AIChE Journal, 55, 1298-1302.10.1002/aic.11729Search in Google Scholar

Pathak, M., 2011. Computational investigations of solid-liquid particle interaction in a two-phase flow around a ducted obstruction. J. Hydraulic. Res., 49, 96-104.10.1080/00221686.2010.537147Search in Google Scholar

Poole, R.J., Escudier, M.P., 2004. Turbulent flow of viscoelastic liquids through an axisymmetric sudden expansion. J. Non-Newtonian Fluid Mech., 117, 25-46.10.1016/j.jnnfm.2003.11.007Search in Google Scholar

Roache, P.J., 1998. Verification and Validation in Computational Science and Engineering. Hermosa, Albuquerque.Search in Google Scholar

Shaan, J., Sumner, R.J., Gillies, R.G., Shook, C.A., 2000. The effect of particle shape on pipeline friction for Newtonian slurries of fine particles. Can. J. Chem. Eng., 78, 717-725.10.1002/cjce.5450780414Search in Google Scholar

Shook, C.A., Bartosik, A.S., 1994. Particle-wall stresses in vertical slurry flows. Powder Technol., 81, 117-124.10.1016/0032-5910(94)02877-XSearch in Google Scholar

Shook, C.A., Roco, M.C., 1991. Slurry Flow: Principles and Practice. Butterworth-Heinemann, Stoneham.Search in Google Scholar

Siriboonluckul, N., Juntasaro, V., 2007. Turbulence modelling for wall-bounded particle-laden flow with separation. Int. Comm. Heat Mass Transfer, 34, 331-338.10.1016/j.icheatmasstransfer.2006.12.003Search in Google Scholar

Spalding, D.B., 1980. Numerical Computation of Multi-Phase Fluid Flow and Heat Transfer. In: Taylor, C., Morgan, K. (Eds.): Recent Advances in Numerical Methods in Fluids. Pineridge Press Limited, Swansea.Search in Google Scholar

Vlasak, P., Chara, Z., 2011. Effect of particle size distribution and concentration on flow behavior of dense slurries. Particul. Sci. Technol, 29, 53-65.10.1080/02726351.2010.508509Search in Google Scholar

Vlasak, P., Kysela, B., Chara, Z., 2012. Flow structure of coarse-grained slurry in a horizontal pipe. J. Hydrol. Hydromech., 60, 115-124.10.2478/v10098-012-0010-7Search in Google Scholar

Xiaowey, H., Liejin, G., 2010. Numerical investigation of catalyst- liquid slurry flow in the photocatalytic reactor for hydrogen production based on algebraic slip model. Int. J. Hydrogen Energy, 35, 7065-7072.10.1016/j.ijhydene.2009.12.162Search in Google Scholar

ISSN:
0042-790X
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other