Multivariate Geostatistical Modeling of Phytophthora rubi and Pratylenchus penetrans in Red Raspberry Fields
Categoría del artículo: Research Paper
Publicado en línea: 24 sept 2025
Recibido: 02 ene 2025
DOI: https://doi.org/10.2478/jofnem-2025-0038
Palabras clave
© 2025 J. B. Contina et al., published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
The Pacific Northwest (PNW; Washington and Oregon) and California lead the commercial production of red raspberry (
Due, in part, to the presence of
A successful disease management program requires detailed information on the spatial distribution and population dynamics of the pathogen. Spatial statistics have been widely used in plant pathology to understand the ecology and spread of pathogens in a cropping system (Turechek and Madden, 1999; Madden et al., 2007; Contina et al., 2018). Furthermore, spatial analysis provides additional insight for selecting effective sampling methods for pathogen detection in the field and identifying spatiotemporal biotic or abiotic risk factors driving the pathogenesis and disease epidemics (Fleischer et al., 1999; Gavassoni et al., 2001; Jaime-Garcia et al., 2001; Contina et al., 2020). Finally, these techniques provide a framework for implementing an integrated pest management strategy that minimizes the risk of severe crop losses and disease resistance development, maximizes the effectiveness of control measures, and increases growers’ return on investment.
Abiotic factors, such as soil moisture and temperature, have been widely found to influence disease incidence and severity levels (Yan and Nelson, 2022). Soil textural heterogeneity may lead to spatial heterogeneity in the growth and proliferation of soilborne pathogens (Curd et al., 2018). A survey of soilborne pathogens in raspberry found
Here, we investigated the spatial distribution of
Four commercial red raspberry fields were sampled for this study. One field was sampled in each Gresham, Oregon (OR-1) and Lynden, Washington (WA-1) in March 2014, and a second pair of fields was sampled in April 2015 in Portland, Oregon (OR-2) and Lynden, Washington (WA-2). The fields were chosen because they represented a diversity of raspberry growing environments in the region and also had areas that varied in plant vigor. All the fields were planted with the same raspberry variety, “Meeker”, and were naturally infested with
An area of approximately 4 ha that contained plants with and without symptoms of
Where
Due to differences in the field layout, the distance between each sampling point varied by field. Sampling points at OR-1 and OR-2 were 25 m × 35 m, while those at WA-1 and WA-2 were 35 m × 20 m and 45 m × 20 m, respectively (Fig. 1). Root samples were collected from a single plant at each sample site. Due to differences in plant health, not all samples had the same amount of collected root material, but generally, 5–10 g of root material was collected from each location. The next nearest plant was sampled if no plant was present at a designated sampling point. Approximately 500 g of soil from around the root system was collected using a shovel along with root material. Roots and soil from each sampling point were stored in the same bag and processed in the laboratory. Samples were passed over a 2-mm sieve to separate roots from the soil, and the soil sample was partitioned to facilitate different analyses.

Layout schematic of a 6 × 10 grid sampling of contiguous quadrats (20 m × 45 m) in the commercial red raspberry production field WA-2 located in Lynden, WA. From the center of each quadrat (red dot), above-ground disease severity was visually assessed and rated; soil and root samples were collected to quantify
A 50-g subsample of soil was placed on a Baermann funnel to extract
Frozen fine root samples for
Soil texture was conducted by A & L Western Labs (Portland, OR). A subsample of soil from each sampling point was analyzed for sand, silt, and clay content.
Global Moran’s I was used to assess spatial autocorrelation in the distribution of disease rating,
Where
Global Moran’s I coefficient values range from −1 to 1, where a value <0 indicates negative spatial autocorrelation and a value >0 indicates positive spatial autocorrelation. A positive spatial autocorrelation indicates the presence of clustering, i.e., nearby areas have similar attribute values, whereas a negative spatial autocorrelation indicates dissimilarities in neighborhood data attribute values.
Local Moran’s I, also known as local indicators of spatial association (LISA), was used to identify local spatial clusters and outliers in the distribution of disease rating,
Where a positive value for
Variogram modeling was used to determine and quantify spatial variability of disease rating,
Where
Parameters associated with the variogram include nugget (the short-range variability in the data), sill (the total variance of the empirical variogram), and range (the distance after which the data are no longer correlated). Variogram points above the sill indicate negative spatial autocorrelation and points below the sill indicate positive spatial autocorrelation. The variogram is fitted with a specific known mathematical function such as the spherical, exponential, Gaussian, or Matern models.
The ordinary kriging was used as a probabilistic interpolator to predict disease rating,
Where
Kriging assumes spatial variation to be statistically consistent across the field and considers that an attribute value is neither completely random nor completely determined. Prediction is codetermined by spatial autocorrelation factors, offsets, and random error (Cressie, 1988, 1990).
Ordinary least squares (OLS) multiple regression is a classical statistical method routinely used to predict dependent variables measured at the interval or ratio level. The OLS multiple regression model is expressed as (Ott and Longnecker, 2016):
Where
In OLS, the estimates and standard errors (SE) are unbiased if the required assumptions are fulfilled—linearity, homoscedasticity, independence of errors, normality, and independent variables (Ott and Longnecker, 2016; James et al., 2021). With spatial dependency, using OLS will produce erroneous predictions due to spatial autocorrelation in the predictor or the OLS regression model residuals, leading to biased parameter estimates (Lopez-Nicora et al., 2020). Therefore, spatial regression models are appropriate for accommodating spatial dependency in either the response variable or the regression model errors (Bivand et al., 2013). The spatial lag model (SLM), spatial Durbin model (SDM), spatial error model (SEM), conditional autoregressive (CAR) model, and spatial autoregressive moving average (SARMA) are widely used to account for spatial interactions between autocorrelated dependent and independent variables (Anselin, 1988; Madden et al., 1988; Bivand et al., 2013; Plant, 2019) and were therefore used in this study.
Spatial lag model, also known as the spatial autoregressive model, only considers the effect of the spatial lag on the dependent variable while focusing on the interaction among observations (Whittle, 1954; Anselin, 1988, 1992) and is defined as:
Where
Spatial Durbin model is a modification of SLM and considers the spatial lag’s effect on the independent and dependent variables (LeSage and Pace, 2009) and is defined as:
Where
Spatial error model considers the spatial lag’s effect in the error term and does not include lagged dependent or independent variables (Anselin, 1992). The error is split into random error and spatially structured error and is defined as:
Where λ is the spatial error coefficient and
Conditional autoregressive focuses on the conditional distribution of the spatial error terms (Cliff and Ord, 1981; Schabenberger and Gotway, 2005; Bivand et al., 2013) and is defined as:
Where
Spatial autoregressive moving average is used for modeling local autocorrelation and can account for spatial dependence among the error terms, like SEM, and the dependent variable, like SLM (LeSage and Pace, 2009), an d is defined as:
This study used the software R version 4.4.0 as a modeling language environment for geostatistical analysis and disease mapping (R Core Team, 2018). Exploratory data analysis was performed, and values of disease rating,
Global Moran’s I test for spatial autocorrelation was computed using the function “moran.test” within the package “spdep” (Bivand et al., 2024a, 2024b), and the Global Moran’s I coefficient and
Ordinary least squares multiple regression was used to assess the influence of soil texture and elevation on the distribution of
Disease severity was worse in OR-1 and WA-2 than in OR-2 and WA-1 (
Exploratory data analysis of disease rating,
Disease rating | 6.53 | 0.18 | 1.37 | 0.29 | |
681.87 | 192.78 | 1,493.29 | 3,270.30 | ||
16.78 | 4.80 | 37.16 | 82.29 | ||
50.38 | 10.62 | 82.25 | 134.27 | ||
% sand | 27.93 | 0.50 | 3.90 | 0.54 | |
% silt | 51.45 | 0.45 | 3.50 | 0.24 | |
% clay | 20.61 | 0.34 | 2.61 | 0.33 | |
Elevation (m) | 6.43 | 0.38 | 2.92 | 1.33 | |
Disease rating | 3.65 | 0.08 | 0.62 | 0.10 | |
91.75 | 64.48 | 499.49 | 2,719.20 | ||
337.32 | 79.88 | 618.74 | 1,134.95 | ||
86.05 | 9.06 | 70.17 | 57.22 | ||
% sand | 27.93 | 0.89 | 6.87 | 1.69 | |
% silt | 45.97 | 0.88 | 6.88 | 1.03 | |
% clay | 26.53 | 0.44 | 3.44 | 0.45 | |
Elevation (m) | 0.66 | 0.05 | 0.39 | 0.23 | |
Disease rating | 3.26 | 0.23 | 1.79 | 0.98 | |
1,106.31 | 514.86 | 3,988.13 | 14,376.77 | ||
16.16 | 5.96 | 46.19 | 132.06 | ||
26.77 | 4.89 | 37.91 | 53.67 | ||
% sand | 62.60 | 0.89 | 6.87 | 0.75 | |
% silt | 27.27 | 0.72 | 5.57 | 1.14 | |
% clay | 10.13 | 0.29 | 2.26 | 0.50 | |
Elevation (m) | 1.74 | 0.13 | 1.00 | 0.58 | |
Disease rating | 5.47 | 0.22 | 1.73 | 0.54 | |
817.32 | 440.91 | 3,415.25 | 14,270.84 | ||
598.35 | 97.64 | 756.33 | 956.02 | ||
178.42 | 26.01 | 201.51 | 227.58 | ||
% sand | 34.01 | 1.01 | 7.85 | 1.81 | |
% silt | 51.75 | 0.92 | 7.11 | 0.98 | |
% clay | 14.25 | 0.41 | 3.18 | 0.71 | |
Elevation (m) | 1.43 | 0.09 | 0.73 | 0.37 |
When <1, the distribution is under-dispersed, and when >1, the distribution is over-dispersed.
SE, standard errors; VMR, variance-to-mean ratio.
Global Moran’s I test was used to assess spatial autocorrelation in the distribution of the measured variable (Table 2). Disease severity and
Global Moran’s I for assessing spatial autocorrelation in disease rating,
Disease rating | 0.28 | <0.001 | |
0.07 | 0.001 | ||
0.04 | 0.08 | ||
0.04 | 0.07 | ||
Sand | 0.11 | <0.001 | |
Silt | 0.10 | 0.002 | |
Clay | 0.18 | <0.001 | |
Elevation | 0.75 | <0.001 | |
Disease rating | 0.01 | 0.22 | |
−0.02 | 0.53 | ||
−0.01 | 0.40 | ||
0.06 | 0.01 | ||
Sand | 0.07 | 0.009 | |
Silt | 0.06 | 0.01 | |
Clay | 0.02 | 0.20 | |
Elevation | 0.10 | 0.002 | |
Disease rating | 0.21 | <0.001 | |
0.08 | 0.003 | ||
0.004 | 0.29 | ||
0.31 | <0.001 | ||
Sand | 0.28 | <0.001 | |
Silt | 0.19 | <0.001 | |
Clay | 0.31 | <0.001 | |
Elevation | 0.59 | <0.001 | |
Disease rating | 0.51 | <0.001 | |
0.22 | <0.001 | ||
0.09 | 0.003 | ||
0.11 | <0.001 | ||
Sand | 0.42 | <0.001 | |
Silt | 0.22 | <0.001 | |
Clay | 0.43 | <0.001 | |
Elevation | 0.53 | <0.001 |
Global Moran’s I coefficient values range from −1 to 1, where a value <0 indicates negative spatial autocorrelation and a value >0 indicates positive spatial autocorrelation. A positive spatial autocorrelation indicates the presence of clustering, i.e., nearby areas have similar attribute values, whereas a negative spatial autocorrelation indicates dissimilarities in neighborhood data attribute values.
The
Local Moran’s I test was performed to identify relationships and spatial associations between each observation of the measured variable with their surrounding neighbors. There were significant similarities or positive spatial associations (PSA) to neighboring sampling points had in 37% of the sampled grids for OR-1, 5% for OR-2, 30% for WA-1, and 72% for WA-2 for disease severity (

LISA for disease rating,

Moran scatterplot for disease rating,

LISA for soil texture (sand, silt, and clay) and field elevation in four commercial red raspberry production fields in Oregon (OR-1 and OR-2) and Washington (WA-1 and WA-2). A positive value for the local Moran’s I indicates that a sampling point has a similar attribute value to the neighboring points (clusters), and a negative value indicates dissimilar attribute values in the local neighborhood (outliers). Solid-filled black shapes indicate the significance of the local Moran’s I coefficient at

Moran scatterplot for soil texture (sand, silt, and clay) and field elevation in four commercial red raspberry production fields in Oregon (OR-1 and OR-2) and Washington (WA-1 and WA-2). The scatterplot is characterized by four quadrants corresponding to the four types of spatial association and illustrates relationships between an individual sampling value (standardized observation) and the average values at neighboring sampling points (standardized spatial lags). The lower left and upper right quadrants indicate spatial clustering or PSA. The lower left quadrant is characterized by low values for both the spatial lags and the observations (Low–Low), and in the upper right quadrant, there are high values for both the spatial lags and the observations (High–High). The upper left (Low–High) and lower right (High–Low) quadrants indicate spatial outliers or NSA. The slope of each regression line corresponds to the Moran’s I coefficients listed in Table 2. NSA, negative spatial association; PSA, positive spatial association.
Experimental variogram analyses were performed to evaluate the spatial variability and fit a spatial model to the distribution of the measured variable. Disease severity displayed some increased levels in the spatial continuity when plotting the distance lags against the semivariance for OR-1 and WA-2 (Fig. 6), and Gaussian and exponential models were fitted to their respective variograms (Table 3).

Experimental variogram graph for assessing the spatial structure of disease rating,

Experimental variogram graph for assessing the spatial structure of soil texture (sand, silt, and clay) and field elevation in four commercial red raspberry production fields in Oregon (OR-1 and OR-2) and Washington (WA-1 and WA-2). The
Fitted models for the experimental variogram analysis for quantifying the extent of spatial autocorrelation in disease rating,
Disease rating | Gaussian | 0.01 | 0.02 | 102.27 | |
Gaussian | 1.05 | 0.44 | 100.72 | ||
Gaussian | 0.50 | 0.03 | 29.52 | ||
Gaussian | 0.76 | 0.11 | 50.01 | ||
Sand | Exponential | 0.002 | 0.003 | 625.91 | |
Silt | Exponential | 0.001 | 0.003 | 983.76 | |
Clay | Gaussian | 0.001 | 0.0005 | 73.70 | |
Elevation | Gaussian | 0.002 | 0.41 | 107.19 | |
Disease rating | Exponential | 0.004 | 0.004 | 644.08 | |
Gaussian | 0.54 | 0.03 | 36.47 | ||
Exponential | 1.62 | 1.17 | 674.35 | ||
Exponential | 0 | 0.39 | 10.03 | ||
Sand | Gaussian | 0.004 | 0.002 | 72.89 | |
Silt | Exponential | 0.003 | 0.004 | 105.97 | |
Clay | Gaussian | 0.001 | 0.0007 | 56.90 | |
Elevation | Exponential | 0.044 | 0.15 | 861.29 | |
Disease rating | Gaussian | 0.03 | 0.32 | 439.20 | |
Exponential | 0.37 | 1.98 | 37.66 | ||
Spherical | 0.31 | 0.14 | 48.26 | ||
Spherical | 0.08 | 0.56 | 94.31 | ||
Sand | Spherical | 0.003 | 0.004 | 505.74 | |
Silt | Gaussian | 0.003 | 0.002 | 75.60 | |
Clay | Exponential | 0.001 | 0.0004 | 145.25 | |
Elevation | Gaussian | 0.024 | 104.36 | 2,855.12 | |
Disease rating | Exponential | 0.0005 | 0.09 | 265.02 | |
Exponential | 0.89 | 0.89 | 362.76 | ||
Exponential | 0.62 | 0.74 | 23.00 | ||
Exponential | 0.13 | 0.42 | 49.90 | ||
Sand | Gaussian | 0.002 | 0.004 | 59.61 | |
Silt | Exponential | 0.002 | 0.006 | 82.70 | |
Clay | Exponential | 0 | 0.002 | 79.82 | |
Elevation | Gaussian | 0.01 | 0.10 | 96.70 |
The fitted mathematical model for the experimental variogram.
The short-range variability in the data.
The total variance of the empirical variogram.
The distance after which the data are no longer correlated.
Directional variogram analyses were performed to test for the potential presence of anisotropy in the distribution of the measured variable. Overall, there were no major directional variations in the distribution of disease severity,

Directional experimental variogram graph for assessing potential directional variations in the spatial structure of disease rating,

Directional experimental variogram graph for assessing potential directional variations in the spatial structure of soil texture (sand, silt, and clay) and field elevation in four commercial red raspberry production fields in Oregon (OR-1 and OR-2) and Washington (WA-1 and WA-2). Directional angles used for the graph include 0° (North–South), 45° (Northeast–Southwest), 90° (East–West), and 135° (Southeast–Northwest). The overlapping of all the angle point lines indicates no directional variations in the spatial structure of the attribute values (isotropy), while major gaps between the angle point lines indicate the presence of directional trends (anisotropy).
Ordinary kriging was used as a probabilistic interpolator to estimate the values of the measured variable at unsampled locations in the fields. Before mapping the kriging predictions, density plots were used to capture and compare the distribution of the predictive outcomes. Disease severity values were skewed toward high disease levels for OR-1, restricted between lower and middle values for OR-2 and WA-1, and a bimodal distribution of two distinct peaks of low and high disease values for WA-2 (Fig. 10).

Kriging density graph for comparing the distribution of interpolated values of disease rating,
Sand content was characterized by low distribution values for OR-1, ranging between 25% and 30%, and OR-2, between 23% and 35%; WA-1 had the highest range of sand content (>55%) with a bimodal distribution; and finally, WA-2 encompassed a bimodal distribution centered to lower range values and an extended skewness reaching 50% of sand content (Fig. 11). Silt content was characterized by a cluster of multimodal density distributions in the upper level of high values for OR-1, OR-2, and WA-2, and WA-1 had the lowest range of values for silt content with a prominent bimodal distribution (Fig. 11). Clay content was characterized by a clear segmentation of OR-1 and OR-2, where OR-2 had the highest distribution levels of clay content; WA-1 dominated the lower range values for clay content; and WA-2 had a trimodal distribution and was skewed toward high values of clay content (Fig. 11). Field elevation was characterized by a cluster of low distribution values for OR-2, WA-1, and WA-2, and OR-1 had the highest distribution levels of elevation values with an extensive skewness toward low values (Fig. 11).

Kriging density graph for comparing the distribution of interpolated values of soil texture (sand, silt, and clay) and field elevation across four commercial red raspberry production fields in Oregon (OR-1 and OR-2) and Washington (WA-1 and WA-2). The
Predictive maps generated by ordinary kriging analysis highlighted the distribution of the measured variables across the fields. Disease severity distribution was characterized by a single focus located westside of OR-1 with a concentric distributional ripple effect expanding eastbound. In OR-2 a monotonous distribution of disease severity values was observed. WA-1 had a descending wave of disease severity values from north to south. WA-2 was characterized by an elongated clump of high disease severity values, stretching from northeast to southeast with radiating waves toward both west and east sides of the field (Fig. 12).

Spatial distribution of disease rating across four commercial red raspberry production fields in Oregon (OR-1 and OR-2) and Washington (WA-1 and WA-2). The ordinary kriging was used as a probabilistic interpolator to predict disease ratings at one or more unsampled points. Northing divides the map from north to south and Easting from west to east. Northing and Easting are grid references and are expressed in meters.

Spatial distribution of
In OR-1,

Spatial distribution of

Spatial distribution of
Sand content had a quasi-monotonous distribution with a limited focus of low sand values for OR-1. OR-2 was characterized by a large clump of low sand values stretching from the westside to the center of the field, and median high values of sand were observed toward the northwest and southeast sides of OR-2. In WA-1, there was a massive area of extremely high sand content located southside of the field and radiating northward. In WA-2, quasi-similar distribution patterns of sand content similar to that of disease severity,

Spatial distribution of the percentage of sand across four commercial red raspberry production fields in Oregon (OR-1 and OR-2) and Washington (WA-1 and WA-2). The ordinary kriging was used as a probabilistic interpolator to predict the percentage of sand at one or more unsampled points. Northing divides the map from north to south and Easting from west to east. Northing and Easting are grid references and are expressed in meters.

Spatial distribution of the percentage of silt across four commercial red raspberry production fields in Oregon (OR-1 and OR-2) and Washington (WA-1 and WA-2). The ordinary kriging was used as a probabilistic interpolator to predict the percentage of silt at one or more unsampled points. Northing divides the map from north to south and Easting from west to east. Northing and Easting are grid references and are expressed in meters.

Spatial distribution of the percentage of clay across four commercial red raspberry production fields in Oregon (OR-1 and OR-2) and Washington (WA-1 and WA-2). The ordinary kriging was used as a probabilistic interpolator to predict the percentage of clay at one or more unsampled points. Northing divides the map from north to south and Easting from west to east. Northing and Easting are grid references and are expressed in meters.
Field elevation was predominated by a focus of high elevation values located southwest corner of OR-1 and radiating northeastward. In OR-2, there was a quasi-monotonous elevation distribution that was characterized by a single focus located north side of the field. WA-1 was represented by a four-layered area spanning from north to south with increasing elevation values. WA-2 followed similar patterns with a three-layered area spanning from northwest to southeast with increasing elevation values (Fig. 19).

Spatial distribution of field elevation across four commercial red raspberry production fields in Oregon (OR-1 and OR-2) and Washington (WA-1 and WA-2). The ordinary kriging was used as a probabilistic interpolator to predict field elevation at one or more unsampled points. Northing divides the map from north to south and Easting from west to east. Northing and Easting are grid references and are expressed in meters.
Ordinary least squares multivariate regression analyses were performed for each field location before performing Moran’s I test to detect spatial autocorrelation in the residuals.
Coefficient estimates and SE for the OLS, SLM, SDM, SEM, CAR, and SARMA multiple regression models and associated VIF and
Intercept | 170.82 | 176.79 | 0.34 | … | … | 162.61 | 168.89 | 0.34 | … | 630.02 | 1,137.13 | 0.58 | … | 206.50 | 171.30 | 0.23 | … | 165.21 | 169.63 | 0.33 | … | 352.59 | 174.37 | 0.04 | … | |
Sand | −90.38 | 93.71 | 0.34 | 834 | … | −86.08 | 89.52 | 0.34 | … | −58.62 | 85.97 | 0.50 | … | −109.83 | 90.71 | 0.23 | … | −87.16 | 89.91 | 0.33 | … | −190.22 | 91.85 | 0.04 | … | |
Silt | −106.57 | 106.04 | 0.32 | 672 | … | −101.50 | 101.30 | 0.32 | …. | −69.18 | 97.38 | 0.48 | …. | −129.10 | 102.67 | 0.21 | …. | −103.13 | 101.73 | 0.31 | …. | −219.04 | 104.35 | 0.04 | …. | |
Clay | −71.96 | 84.94 | 0.40 | 371 | …. | −68.82 | 81.13 | 0.40 | …. | −43.99 | 78.40 | 0.57 | …. | −86.67 | 82.50 | 0.29 | …. | −69.55 | 81.53 | 0.39 | …. | −150.11 | 84.75 | 0.08 | …. | |
Elevation | 0.14 | 0.21 | 0.52 | 1 | …. | 0.14 | 0.21 | 0.51 | …. | −0.27 | 0.56 | 0.63 | …. | 0.18 | 0.16 | 0.26 | …. | 0.12 | 0.20 | 0.55 | …. | 0.34 | 0.07 | <0.001 | …. | |
…. | …. | …. | …. | 0.12 | …. | …. | …. | 0.61 | …. | …. | …. | 0.002 | …. | …. | …. | 0.52 | …. | …. | …. | 0.81 | …. | …. | …. | <0.001 | ||
…. | …. | …. | …. | 0.12 | …. | …. | …. | 0.13 | …. | …. | …. | 0.31 | …. | …. | …. | 0.13 | …. | …. | …. | 0.12 | …. | …. | …. | 0.27 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.16 | …. | …. | …. | −1.61 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.45 | …. | …. | …. | −0.11 | …. | …. | …. | −1.00 | |
AIC | …. | …. | …. | …. | 188.75 | …. | …. | …. | 190.52 | …. | …. | …. | 184.66 | …. | …. | …. | 190.33 | …. | …. | …. | 190.69 | …. | …. | …. | 179.81 | |
Intercept | 3.57 | 5.96 | 0.55 | …. | …. | 3.77 | 5.69 | 0.51 | …. | 64.68 | 34.00 | 0.06 | …. | 3.71 | 5.71 | 0.52 | …. | 3.81 | 5.71 | 0.50 | …. | 3.75 | 5.71 | 0.51 | …. | |
Sand | −3.33 | 3.36 | 0.33 | 7 | …. | −3.35 | 3.21 | 0.30 | …. | −4.27 | 2.96 | 0.15 | …. | −3.29 | 3.21 | 0.30 | …. | −3.31 | 3.21 | 0.30 | …. | −3.25 | 3.20 | 0.31 | …. | |
Silt | −1.35 | 2.73 | 0.62 | 4 | …. | −1.39 | 2.61 | 0.59 | …. | −0.90 | 2.37 | 0.71 | …. | −1.35 | 2.62 | 0.61 | …. | −1.33 | 2.62 | 0.61 | …. | −1.33 | 2.62 | 0.61 | …. | |
Clay | −1.74 | 4.84 | 0.72 | 4 | …. | −1.95 | 4.63 | 0.67 | …. | −4.48 | 4.31 | 0.30 | …. | −2.11 | 4.64 | 0.65 | …. | −2.24 | 4.64 | 0.63 | …. | −2.28 | 4.65 | 0.62 | …. | |
Elevation | 0.70 | 0.43 | 0.11 | 1 | …. | 0.72 | 0.41 | 0.08 | …. | 0.99 | 0.43 | 0.02 | …. | 0.74 | 0.41 | 0.07 | …. | 0.71 | 0.41 | 0.08 | …. | 0.77 | 0.41 | 0.06 | …. | |
…. | …. | …. | …. | 0.20 | …. | …. | …. | 0.66 | …. | …. | …. | 0.08 | …. | …. | …. | 0.75 | …. | …. | …. | 0.80 | …. | …. | …. | 0.70 | ||
…. | …. | …. | …. | 0.10 | …. | …. | …. | 0.10 | …. | …. | …. | 0.26 | …. | …. | …. | 0.10 | …. | …. | …. | 0.10 | …. | …. | …. | 0.10 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | −0.19 | …. | …. | …. | −0.95 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.16 | …. | …. | …. | −0.21 | …. | …. | …. | −0.22 | |
AIC | …. | …. | …. | …. | 140.22 | …. | …. | …. | 142.03 | …. | …. | …. | 138.41 | …. | …. | …. | 142.12 | …. | …. | …. | 142.16 | …. | …. | …. | 142.07 | |
Intercept | 377.42 | 178.96 | 0.04 | …. | …. | 366.48 | 171.24 | 0.03 | …. | 2,253.52 | 928.36 | 0.02 | …. | 433.58 | 172.67 | 0.01 | …. | 394.63 | 172.45 | 0.02 | …. | 623.12 | 168.46 | <0.001 | …. | |
Sand | −234.25 | 110.15 | 0.04 | 2,273 | …. | −227.56 | 105.39 | 0.03 | …. | −307.03 | 109.63 | 0.01 | …. | −269.09 | 106.27 | 0.01 | …. | −245.12 | 106.14 | 0.02 | …. | −385.75 | 103.65 | <0.001 | …. | |
Silt | −216.77 | 102.23 | 0.04 | 1,513 | …. | −210.62 | 97.81 | 0.03 | …. | −283.21 | 101.50 | 0.01 | …. | −249.03 | 98.70 | 0.01 | …. | −226.96 | 98.56 | 0.02 | …. | −359.67 | 96.37 | <0.001 | …. | |
Clay | −136.93 | 69.69 | 0.05 | 234 | …. | −132.92 | 66.68 | 0.05 | …. | −182.98 | 69.40 | 0.01 | …. | −157.58 | 67.22 | 0.02 | …. | −142.08 | 67.14 | 0.03 | …. | −226.26 | 65.59 | <0.001 | …. | |
Elevation | 0.16 | 0.59 | 0.79 | 2 | …. | 0.23 | 0.59 | 0.70 | …. | 0.61 | 0.96 | 0.53 | …. | 0.16 | 0.53 | 0.76 | …. | 0.14 | 0.54 | 0.80 | …. | 0.03 | 0.47 | 0.95 | …. | |
…. | …. | …. | …. | 0.06 | …. | …. | …. | 0.79 | …. | …. | …. | 0.32 | …. | …. | …. | 0.56 | …. | …. | …. | 0.64 | …. | …. | …. | <0.001 | ||
…. | …. | …. | …. | 0.15 | …. | …. | …. | 0.15 | …. | …. | …. | 0.26 | …. | …. | …. | 0.16 | …. | …. | …. | 0.16 | …. | …. | …. | 0.33 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.10 | …. | …. | …. | −0.56 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.35 | …. | …. | …. | −0.47 | …. | …. | …. | −1.00 | |
AIC | …. | …. | …. | …. | 205.23 | …. | …. | …. | 207.16 | …. | …. | …. | 207.30 | …. | …. | …. | 206.89 | …. | …. | …. | 207.01 | …. | …. | …. | 192.91 | |
Intercept | 31.13 | 81.32 | 0.70 | …. | …. | 55.75 | 74.27 | 0.45 | …. | −1,283.90 | 435.02 | 0.003 | …. | 81.42 | 72.40 | 0.26 | …. | 73.91 | 75.04 | 0.32 | …. | 81.12 | 68.18 | 0.23 | …. | |
Sand | −13.68 | 46.87 | 0.77 | 918 | …. | −29.74 | 42.81 | 0.49 | …. | 1.43 | 45.08 | 0.97 | …. | −44.84 | 41.77 | 0.28 | …. | −39.77 | 43.26 | 0.36 | …. | −45.34 | 39.32 | 0.25 | …. | |
Silt | −20.09 | 48.30 | 0.68 | 740 | …. | −35.34 | 44.11 | 0.42 | …. | −3.13 | 46.18 | 0.95 | …. | −50.61 | 43.02 | 0.24 | …. | −46.71 | 44.59 | 0.29 | …. | −50.56 | 40.54 | 0.21 | …. | |
Clay | −14.28 | 35.07 | 0.69 | 150 | …. | −22.02 | 32.03 | 0.49 | …. | 7.21 | 33.75 | 0.83 | …. | −31.23 | 31.03 | 0.31 | …. | −29.04 | 32.27 | 0.37 | …. | −29.98 | 29.13 | 0.30 | …. | |
Elevation | 0.22 | 0.41 | 0.60 | 1 | …. | 0.07 | 0.38 | 0.86 | …. | 0.36 | 0.66 | 0.58 | …. | 0.21 | 0.55 | 0.71 | …. | 0.47 | 0.49 | 0.34 | …. | 0.30 | 0.59 | 0.61 | …. | |
…. | …. | …. | …. | 0.01 | …. | …. | …. | 0.04 | …. | …. | …. | 0.72 | …. | …. | …. | 0.05 | …. | …. | …. | 0.16 | …. | …. | …. | 0.01 | ||
…. | …. | …. | …. | 0.21 | …. | …. | …. | 0.26 | …. | …. | …. | 0.39 | …. | …. | …. | 0.26 | …. | …. | …. | 0.24 | …. | …. | …. | 0.29 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.56 | …. | …. | …. | −0.17 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | 0.70 | …. | …. | …. | 0.76 | …. | …. | …. | 1.82 | |
AIC | …. | …. | …. | …. | 174.41 | …. | …. | …. | 172.22 | …. | …. | …. | 168.70 | …. | …. | …. | 172.43 | …. | …. | …. | 174.42 | …. | …. | …. | 170.42 |
Independent variables were sand, silt, clay, and field elevation. The
AIC, Akaike information criterion; CAR, conditional autoregressive; OLS, ordinary least squares; P, probability; SARMA, spatial autoregressive moving average; SDM, spatial Durbin model; SE, standard errors; SEM, spatial error model; SLM, spatial lag model; VIF, variance inflation factor.
Coefficient estimates and SE for the OLS, SLM, SDM, SEM, CAR, and SARMA multiple regression models and associated VIF and
Intercept | 22.66 | 119.13 | 0.85 | …. | …. | 22.73 | 114.06 | 0.84 | …. | 973.21 | 805.65 | 0.23 | …. | 29.70 | 115.29 | 0.80 | …. | 28.07 | 114.95 | 0.80 | …. | −0.03 | 111.84 | 0.99 | …. | |
Sand | −12.03 | 63.15 | 0.85 | 834 | …. | −12.05 | 60.46 | 0.84 | …. | −57.46 | 62.92 | 0.36 | …. | −15.45 | 61.03 | 0.80 | …. | −14.49 | 60.60 | 0.81 | …. | 1.24 | 58.91 | 0.98 | …. | |
Silt | −10.88 | 71.46 | 0.88 | 672 | …. | −10.86 | 68.42 | 0.87 | …. | −62.92 | 71.27 | 0.38 | …. | −14.67 | 69.08 | 0.83 | …. | −13.61 | 68.92 | 0.84 | …. | 3.39 | 66.93 | 0.96 | …. | |
Clay | −14.89 | 57.24 | 0.80 | 371 | …. | −15.03 | 54.80 | 0.78 | …. | −55.89 | 57.40 | 0.33 | …. | −19.50 | 55.57 | 0.73 | …. | −18.83 | 55.31 | 0.73 | …. | −6.89 | 54.35 | 0.90 | …. | |
Elevation | 0.10 | 0.14 | 0.50 | 1 | …. | 0.11 | 0.14 | 0.44 | …. | −0.34 | 0.41 | 0.42 | …. | 0.12 | 0.10 | 0.22 | …. | 0.09 | 0.12 | 0.46 | …. | 0.15 | 0.05 | 0.002 | …. | |
…. | …. | …. | …. | 0.37 | …. | …. | …. | 0.87 | …. | …. | …. | 0.14 | …. | …. | …. | 0.35 | …. | …. | …. | 0.52 | …. | …. | …. | <0.001 | ||
…. | …. | …. | …. | 0.07 | …. | …. | …. | 0.07 | …. | …. | …. | 0.18 | …. | …. | …. | 0.09 | …. | …. | …. | 0.08 | …. | …. | …. | 0.31 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | −0.07 | …. | …. | …. | −0.88 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.60 | …. | …. | …. | −0.58 | …. | …. | …. | −0.99 | |
AIC | …. | …. | …. | …. | 141.38 | …. | …. | …. | 143.35 | …. | …. | …. | 143.80 | …. | …. | …. | 142.50 | …. | …. | …. | 142.96 | …. | …. | …. | 125.53 | |
Intercept | 3.49 | 10.82 | 0.75 | …. | …. | 3.60 | 10.36 | 0.73 | …. | 25.86 | 63.55 | 0.68 | …. | 3.27 | 10.36 | 0.75 | …. | 3.77 | 10.36 | 0.72 | …. | 3.34 | 10.35 | 0.75 | …. | |
Sand | 0.35 | 6.10 | 0.95 | 7 | …. | 0.44 | 5.84 | 0.94 | …. | −1.02 | 5.62 | 0.86 | …. | 0.83 | 5.81 | 0.89 | …. | 0.60 | 5.83 | 0.92 | …. | 1.23 | 5.76 | 0.83 | …. | |
Silt | −3.42 | 4.96 | 0.49 | 4 | …. | −3.41 | 4.74 | 0.47 | …. | −3.60 | 4.49 | 0.42 | …. | −3.35 | 4.76 | 0.48 | …. | −3.38 | 4.75 | 0.48 | …. | −3.45 | 4.77 | 0.47 | …. | |
Clay | 1.80 | 8.80 | 0.84 | 4 | …. | 1.71 | 8.42 | 0.84 | …. | −0.04 | 8.11 | 0.99 | …. | 1.55 | 8.43 | 0.85 | …. | 0.99 | 8.43 | 0.91 | …. | 1.10 | 8.46 | 0.90 | …. | |
Elevation | −0.92 | 0.79 | 0.25 | 1 | …. | −0.90 | 0.75 | 0.23 | …. | −1.18 | 0.80 | 0.14 | …. | −0.88 | 0.74 | 0.24 | …. | −0.94 | 0.75 | 0.21 | …. | −0.88 | 0.72 | 0.22 | …. | |
…. | …. | …. | …. | 0.49 | …. | …. | …. | 0.80 | …. | …. | …. | 0.19 | …. | …. | …. | 0.66 | …. | …. | …. | 0.77 | …. | …. | …. | 0.51 | ||
…. | …. | …. | …. | 0.06 | …. | …. | …. | 0.06 | …. | …. | …. | 0.17 | …. | …. | …. | 0.06 | …. | …. | …. | 0.06 | …. | …. | …. | 0.07 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | −0.10 | …. | …. | …. | −0.64 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.22 | …. | …. | …. | −0.18 | …. | …. | …. | −0.43 | |
AIC | …. | …. | …. | …. | 211.88 | …. | …. | …. | 213.82 | …. | …. | …. | 214.17 | …. | …. | …. | 213.68 | …. | …. | …. | 213.80 | …. | …. | …. | 213.44 | |
Intercept | −76.26 | 100.24 | 0.45 | …. | …. | −77.12 | 95.99 | 0.42 | …. | 179.96 | 501.46 | 0.72 | …. | −76.26 | 96.02 | 0.43 | …. | −76.81 | 96.01 | 0.42 | …. | −76.27 | 96.05 | 0.43 | …. | |
Sand | 46.61 | 61.70 | 0.45 | 2,272 | …. | 47.17 | 59.08 | 0.42 | …. | 36.20 | 62.66 | 0.56 | …. | 46.62 | 59.10 | 0.43 | …. | 46.94 | 59.09 | 0.43 | …. | 46.62 | 59.12 | 0.43 | …. | |
Silt | 44.13 | 57.26 | 0.44 | 1,513 | …. | 44.59 | 54.83 | 0.42 | …. | 33.18 | 58.03 | 0.57 | …. | 44.12 | 54.85 | 0.42 | …. | 44.43 | 54.84 | 0.42 | …. | 44.11 | 54.87 | 0.42 | …. | |
Clay | 29.62 | 39.04 | 0.45 | 234 | …. | 30.00 | 37.38 | 0.42 | …. | 22.51 | 39.73 | 0.57 | …. | 29.63 | 37.39 | 0.43 | …. | 29.86 | 37.39 | 0.42 | …. | 29.64 | 37.41 | 0.43 | …. | |
Elevation | 0.39 | 0.33 | 0.24 | 2 | …. | 0.40 | 0.32 | 0.22 | …. | 0.23 | 0.56 | 0.68 | …. | 0.39 | 0.32 | 0.21 | …. | 0.39 | 0.32 | 0.21 | …. | 0.39 | 0.32 | 0.21 | …. | |
…. | …. | …. | …. | 0.58 | …. | …. | …. | 0.88 | …. | …. | …. | 0.57 | …. | …. | …. | 0.98 | …. | …. | …. | 0.99 | …. | …. | …. | 0.97 | ||
…. | …. | …. | …. | 0.05 | …. | …. | …. | 0.05 | …. | …. | …. | 0.12 | …. | …. | …. | 0.05 | …. | …. | …. | 0.05 | …. | …. | …. | 0.05 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | −0.07 | …. | …. | …. | −0.25 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.01 | …. | …. | …. | −0.02 | …. | …. | …. | −0.02 | |
AIC | …. | …. | …. | …. | 135.68 | …. | …. | …. | 137.66 | …. | …. | …. | 141.14 | …. | …. | …. | 137.68 | …. | …. | …. | 137.68 | …. | …. | …. | 137.68 | |
Intercept | −69.62 | 92.71 | 0.46 | …. | …. | −80.33 | 88.63 | 0.36 | …. | −555.77 | 494.67 | 0.26 | …. | −85.09 | 83.81 | 0.31 | …. | −105.32 | 88.00 | 0.23 | …. | −102.97 | 81.30 | 0.20 | …. | |
Sand | 42.80 | 53.43 | 0.43 | 918 | …. | 49.75 | 51.18 | 0.33 | …. | 49.42 | 51.62 | 0.34 | …. | 52.09 | 48.36 | 0.28 | …. | 63.01 | 50.72 | 0.21 | …. | 62.42 | 46.93 | 0.18 | …. | |
Silt | 43.95 | 55.07 | 0.43 | 740 | …. | 50.55 | 52.68 | 0.34 | …. | 52.80 | 52.88 | 0.32 | …. | 52.72 | 49.63 | 0.29 | …. | 65.84 | 52.22 | 0.21 | …. | 63.45 | 48.10 | 0.19 | …. | |
Clay | 23.00 | 39.98 | 0.57 | 150 | …. | 26.83 | 38.16 | 0.48 | …. | 31.98 | 38.73 | 0.41 | …. | 29.20 | 36.41 | 0.42 | …. | 37.54 | 38.05 | 0.32 | …. | 36.09 | 35.40 | 0.31 | …. | |
Elevation | 0.81 | 0.47 | 0.09 | 1 | …. | 1 | 0.47 | 0.03 | …. | 0.24 | 0.77 | 0.75 | …. | 1.04 | 0.26 | <0.001 | …. | 0.81 | 0.37 | 0.03 | …. | 1.19 | 0.17 | <0.001 | …. | |
…. | …. | …. | …. | 0.03 | …. | …. | …. | 0.45 | …. | …. | …. | 0.02 | …. | …. | …. | 0.04 | …. | …. | …. | 0.23 | …. | …. | …. | <0.001 | ||
…. | …. | …. | …. | 0.18 | …. | …. | …. | 0.19 | …. | …. | …. | 0.29 | …. | …. | …. | 0.24 | …. | …. | …. | 0.20 | …. | …. | …. | 0.42 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | −0.29 | …. | …. | …. | −1.29 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −1.25 | …. | …. | …. | −0.87 | …. | …. | …. | −0.99 | |
AIC | …. | …. | …. | …. | 190.14 | …. | …. | …. | 191.57 | …. | …. | …. | 191.06 | …. | …. | …. | 187.75 | …. | …. | …. | 190.73 | …. | …. | …. | 170.95 |
Independent variables were sand, silt, clay, and field elevation. The
AIC, Akaike information criterion; CAR, conditional autoregressive; OLS, ordinary least squares;
Coefficient estimates and SE for the OLS, SLM, SDM, SEM, CAR, and SARMA multiple regression models and associated VIF and
Intercept | −36.41 | 148.53 | 0.80 | …. | …. | −37.35 | 142.21 | 0.79 | …. | 1,044.05 | 848.43 | 0.22 | …. | −68.40 | 143.65 | 0.63 | …. | −52.73 | 143.26 | 0.71 | …. | −71.80 | 144.06 | 0.62 | …. | |
Sand | 19.96 | 78.73 | 0.80 | 834 | …. | 20.50 | 75.38 | 0.78 | …. | −70.87 | 63.18 | 0.26 | …. | 38.28 | 76.03 | 0.61 | …. | 29.76 | 75.90 | 0.69 | …. | 39.88 | 76.26 | 0.60 | …. | |
Silt | 25.04 | 89.09 | 0.78 | 672 | …. | 25.66 | 85.30 | 0.76 | …. | −78.09 | 71.53 | 0.27 | …. | 45.24 | 86.07 | 0.60 | …. | 35.89 | 85.89 | 0.68 | …. | 47.07 | 86.33 | 0.59 | …. | |
Clay | 12.55 | 71.36 | 0.86 | 371 | …. | 12.91 | 68.32 | 0.85 | …. | −70.68 | 57.59 | 0.22 | …. | 24.91 | 69.27 | 0.72 | …. | 17.65 | 68.94 | 0.80 | …. | 27.04 | 69.43 | 0.70 | …. | |
Elevation | 0.13 | 0.18 | 0.48 | 1 | …. | 0.13 | 0.18 | 0.46 | …. | 0.82 | 0.42 | 0.05 | …. | 0.06 | 0.12 | 0.61 | …. | 0.04 | 0.15 | 0.77 | …. | 0.08 | 0.12 | 0.53 | …. | |
…. | …. | …. | …. | 0.36 | …. | …. | …. | 0.92 | …. | …. | …. | <0.001 | …. | …. | …. | 0.31 | …. | …. | …. | 0.48 | …. | …. | …. | 0.37 | ||
…. | …. | …. | …. | 0.07 | …. | …. | …. | 0.07 | …. | …. | …. | 0.42 | …. | …. | …. | 0.09 | …. | …. | …. | 0.08 | …. | …. | …. | 0.09 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | −0.03 | …. | …. | …. | −1.95 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.67 | …. | …. | …. | −0.60 | …. | …. | …. | −0.43 | |
AIC | …. | …. | …. | …. | 167.85 | …. | …. | …. | 169.84 | …. | …. | …. | 149.76 | …. | …. | …. | 168.8 | …. | …. | …. | 169.35 | …. | …. | …. | 169.04 | |
Intercept | 0.34 | 5.17 | 0.95 | …. | …. | −0.45 | 4.92 | 0.93 | …. | 15.33 | 31.00 | 0.62 | …. | −0.02 | 4.87 | 0.99 | …. | 0.03 | 4.94 | 0.99 | …. | −0.01 | 4.88 | 0.99 | …. | |
Sand | 0.76 | 2.92 | 0.80 | 7 | …. | 0.87 | 2.76 | 0.75 | …. | −0.32 | 2.74 | 0.91 | …. | 0.82 | 2.77 | 0.77 | …. | 0.69 | 2.79 | 0.80 | …. | 0.79 | 2.77 | 0.78 | …. | |
Silt | −0.36 | 2.37 | 0.88 | 4 | …. | −0.15 | 2.24 | 0.94 | …. | −1.28 | 2.21 | 0.56 | …. | −0.02 | 2.22 | 0.99 | …. | −0.34 | 2.26 | 0.88 | …. | −0.01 | 2.23 | 0.99 | …. | |
Clay | 3.04 | 4.20 | 0.47 | 4 | …. | 3.13 | 3.98 | 0.43 | …. | 1.99 | 3.95 | 0.61 | …. | 3.10 | 3.96 | 0.43 | …. | 3.60 | 4.01 | 0.37 | …. | 3.13 | 3.97 | 0.43 | …. | |
Elevation | −0.53 | 0.38 | 0.16 | 1 | …. | −0.49 | 0.36 | 0.16 | …. | −0.84 | 0.40 | 0.03 | …. | −0.49 | 0.36 | 0.18 | …. | −0.49 | 0.36 | 0.18 | …. | −0.50 | 0.36 | 0.17 | …. | |
…. | …. | …. | …. | 0.64 | …. | …. | …. | 0.32 | …. | …. | …. | 0.95 | …. | …. | …. | 0.35 | …. | …. | …. | 0.69 | …. | …. | …. | 0.37 | ||
…. | …. | …. | …. | 0.04 | …. | …. | …. | 0.06 | …. | …. | …. | 0.14 | …. | …. | …. | 0.06 | …. | …. | …. | 0.05 | …. | …. | …. | 0.06 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.29 | …. | …. | …. | −0.03 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | 0.30 | …. | …. | …. | 0.11 | …. | …. | …. | 0.34 | |
AIC | …. | …. | …. | …. | 123.25 | …. | …. | …. | 124.26 | …. | …. | …. | 126.93 | …. | …. | …. | 124.40 | …. | …. | …. | 125.09 | …. | …. | …. | 124.45 | |
Intercept | 30.66 | 99.00 | 0.76 | …. | …. | 13.45 | 86.71 | 0.88 | …. | 2,135.04 | 424.48 | <0.001 | …. | −33.96 | 86.30 | 0.69 | …. | −4.70 | 90.26 | 0.96 | …. | −58.12 | 84.84 | 0.49 | …. | |
Sand | −17.59 | 60.93 | 0.77 | 2,273 | …. | −7.27 | 53.37 | 0.89 | …. | −140.67 | 52.15 | 0.007 | …. | 21.97 | 53.10 | 0.68 | …. | 4.29 | 55.54 | 0.93 | …. | 37.00 | 52.21 | 0.48 | …. | |
Silt | −17.61 | 56.55 | 0.76 | 1,513 | …. | −7.56 | 49.53 | 0.88 | …. | −132.37 | 48.37 | 0.006 | …. | 19.72 | 49.16 | 0.69 | …. | 2.66 | 51.48 | 0.96 | …. | 33.30 | 48.34 | 0.49 | …. | |
Clay | −15.32 | 38.55 | 0.69 | 234 | …. | −8.53 | 33.77 | 0.80 | …. | −93.85 | 33.09 | 0.004 | …. | 10.04 | 33.65 | 0.77 | …. | −2.33 | 35.17 | 0.95 | …. | 19.54 | 33.11 | 0.55 | …. | |
Elevation | 0.68 | 0.33 | 0.04 | 2 | …. | 0.22 | 0.30 | 0.47 | …. | −0.63 | 0.44 | 0.15 | …. | 0.38 | 0.39 | 0.33 | …. | 0.49 | 0.35 | 0.16 | …. | 0.45 | 0.37 | 0.22 | …. | |
…. | …. | …. | …. | <0.001 | …. | …. | …. | 0.004 | …. | …. | …. | 0.96 | …. | …. | …. | 0.02 | …. | …. | …. | 0.07 | …. | …. | …. | 0.02 | ||
…. | …. | …. | …. | 0.29 | …. | …. | …. | 0.38 | …. | …. | …. | 0.59 | …. | …. | …. | 0.35 | …. | …. | …. | 0.32 | …. | …. | …. | 0.35 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.70 | …. | …. | …. | −0.02 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | 0.72 | …. | …. | …. | 0.77 | …. | …. | …. | 1.01 | |
AIC | …. | …. | …. | …. | 134.18 | …. | …. | …. | 127.78 | …. | …. | …. | 111.71 | …. | …. | …. | 130.76 | …. | …. | …. | 133.03 | …. | …. | …. | 130.58 | |
Intercept | −60.06 | 53.39 | 0.26 | …. | …. | −51.53 | 49.99 | 0.30 | …. | 157.38 | 292.91 | 0.59 | …. | −52.72 | 49.96 | 0.29 | …. | −55.47 | 50.96 | 0.28 | …. | −40.27 | 49.21 | 0.41 | …. | |
Sand | 36.21 | 30.77 | 0.24 | 918 | …. | 30.52 | 28.82 | 0.29 | …. | 5.95 | 30.84 | 0.85 | …. | 31.58 | 28.80 | 0.27 | …. | 33.65 | 29.37 | 0.25 | …. | 24.24 | 28.37 | 0.39 | …. | |
Silt | 38.69 | 31.71 | 0.23 | 740 | …. | 32.91 | 29.70 | 0.27 | …. | 9.24 | 31.60 | 0.77 | …. | 34.22 | 29.69 | 0.25 | …. | 35.80 | 30.27 | 0.24 | …. | 26.65 | 29.25 | 0.36 | …. | |
Clay | 22.07 | 23.02 | 0.34 | 150 | …. | 18.93 | 21.55 | 0.38 | …. | 3.47 | 23.16 | 0.88 | …. | 20.09 | 21.48 | 0.35 | …. | 20.22 | 21.96 | 0.36 | …. | 15.37 | 21.12 | 0.47 | …. | |
Elevation | −0.03 | 0.27 | 0.92 | 1 | …. | −0.04 | 0.25 | 0.87 | …. | −0.39 | 0.46 | 0.39 | …. | −0.11 | 0.32 | 0.73 | …. | 0.003 | 0.27 | 0.99 | …. | −0.12 | 0.34 | 0.73 | …. | |
…. | …. | …. | …. | 0.08 | …. | …. | …. | 0.17 | …. | …. | …. | 0.74 | …. | …. | …. | 0.38 | …. | …. | …. | 0.71 | …. | …. | …. | 0.24 | ||
…. | …. | …. | …. | 0.15 | …. | …. | …. | 0.17 | …. | …. | …. | 0.25 | …. | …. | …. | 0.16 | …. | …. | …. | 0.15 | …. | …. | …. | 0.16 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.45 | …. | …. | …. | 0.14 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | 0.42 | …. | …. | …. | 0.15 | …. | …. | …. | 0.83 | |
AIC | …. | …. | …. | …. | 123.91 | …. | …. | …. | 124.05 | …. | …. | …. | 126.10 | …. | …. | …. | 125.13 | …. | …. | …. | 125.77 | …. | …. | …. | 124.55 |
Independent variables were sand, silt, clay, and field elevation. The
AIC, Akaike information criterion; CAR, conditional autoregressive; OLS, ordinary least squares;
Disease severity was significantly influenced by
Coefficient estimates and SE for the OLS, SLM, SDM, SEM, CAR, and SARMA multiple regression models and associated VIF and
Intercept | 0.83 | 0.03 | <0.001 | …. | …. | 0.20 | 0.14 | 0.15 | …. | 0.78 | 0.34 | 0.02 | …. | 0.83 | 0.05 | <0.001 | …. | 0.82 | 0.03 | <0.001 | …. | 0.83 | 0.05 | <0.001 | …. | |
0.08 | 0.01 | <0.001 | 1.02 | …. | 0.07 | 0.01 | <0.001 | …. | 0.07 | 0.01 | <0.001 | …. | 0.07 | 0.01 | <0.001 | …. | 0.09 | 0.01 | <0.001 | …. | 0.07 | 0.01 | <0.001 | …. | ||
0.01 | 0.02 | 0.57 | 1.30 | …. | 0.01 | 0.02 | 0.52 | …. | 0.02 | 0.02 | 0.20 | …. | 0.01 | 0.02 | 0.62 | …. | 0.01 | 0.02 | 0.71 | …. | 0.01 | 0.02 | 0.66 | …. | ||
−0.04 | 0.02 | 0.04 | 1.32 | …. | −0.02 | 0.02 | 0.15 | …. | −0.03 | 0.02 | 0.10 | …. | −0.02 | 0.02 | 0.19 | …. | −0.03 | 0.02 | 0.04 | …. | −0.01 | 0.01 | 0.42 | …. | ||
…. | …. | …. | …. | <0.001 | …. | …. | …. | <0.001 | …. | …. | …. | 0.79 | …. | …. | …. | <0.001 | …. | …. | …. | 0.56 | …. | …. | …. | <0.001 | ||
…. | …. | …. | …. | 0.46 | …. | …. | …. | 0.57 | …. | …. | …. | 0.61 | …. | …. | …. | 0.53 | …. | …. | …. | 0.46 | …. | …. | …. | 0.56 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.67 | …. | …. | …. | −0.12 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | 0.73 | …. | …. | …. | 0.09 | …. | …. | …. | 2.06 | |
AIC | …. | …. | …. | …. | −84.58 | …. | …. | …. | −95.82 | …. | …. | …. | −96.37 | …. | …. | …. | −90.26 | …. | …. | …. | −82.92 | …. | …. | …. | −95.25 | |
Intercept | 0.61 | 0.02 | <0.001 | …. | …. | 0.58 | 0.23 | 0.01 | …. | 0.74 | 0.25 | 0.003 | …. | 0.61 | 0.02 | <0.001 | …. | 0.61 | 0.02 | <0.001 | …. | 0.61 | 0.02 | <0.001 | …. | |
0.01 | 0.01 | 0.27 | 1.01 | …. | 0.01 | 0.01 | 0.25 | …. | 0.006 | 0.01 | 0.56 | …. | 0.01 | 0.01 | 0.25 | …. | 0.01 | 0.01 | 0.26 | …. | 0.01 | 0.01 | 0.25 | …. | ||
0.008 | 0.006 | 0.22 | 1.09 | …. | 0.008 | 0.006 | 0.21 | …. | 0.01 | 0.006 | 0.08 | …. | 0.008 | 0.006 | 0.18 | …. | 0.008 | 0.006 | 0.19 | …. | 0.008 | 0.006 | 0.18 | …. | ||
0.01 | 0.01 | 0.38 | 1.09 | …. | 0.01 | 0.01 | 0.36 | …. | 0.004 | 0.01 | 0.74 | …. | 0.01 | 0.01 | 0.35 | …. | 0.01 | 0.01 | 0.35 | …. | 0.01 | 0.01 | 0.34 | …. | ||
…. | …. | …. | …. | 0.21 | …. | …. | …. | 0.88 | …. | …. | …. | 0.58 | …. | …. | …. | 0.81 | …. | …. | …. | 0.95 | …. | …. | …. | 0.77 | ||
…. | …. | …. | …. | 0.08 | …. | …. | …. | 0.08 | …. | …. | …. | 0.17 | …. | …. | …. | 0.08 | …. | …. | …. | 0.08 | …. | …. | …. | 0.08 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.05 | …. | …. | …. | −0.24 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.10 | …. | …. | …. | −0.01 | …. | …. | …. | −0.13 | |
AIC | …. | …. | …. | …. | −153.46 | …. | …. | …. | −151.48 | …. | …. | …. | −152.09 | …. | …. | …. | −151.52 | …. | …. | …. | −151.47 | …. | …. | …. | −151.54 | |
Intercept | 0.59 | 0.03 | <0.001 | …. | …. | 0.31 | 0.13 | 0.01 | …. | 0.82 | 0.27 | 0.003 | …. | 0.58 | 0.04 | <0.001 | …. | 0.59 | 0.03 | <0.001 | …. | 0.58 | 0.04 | <0.001 | …. | |
0.09 | 0.01 | <0.001 | 1.00 | …. | 0.08 | 0.01 | <0.001 | …. | 0.08 | 0.01 | <0.001 | …. | 0.08 | 0.01 | <0.001 | …. | 0.09 | 0.01 | <0.001 | …. | 0.08 | 0.01 | <0.001 | …. | ||
−0.01 | 0.03 | 0.63 | 1.01 | …. | −0.008 | 0.02 | 0.74 | …. | −0.02 | 0.02 | 0.48 | …. | −0.009 | 0.02 | 0.74 | …. | −0.01 | 0.03 | 0.59 | …. | −0.008 | 0.02 | 0.73 | …. | ||
−0.05 | 0.02 | 0.03 | 1.01 | …. | −0.03 | 0.02 | 0.18 | …. | −0.02 | 0.03 | 0.51 | …. | −0.04 | 0.02 | 0.11 | …. | −0.05 | 0.02 | 0.04 | …. | −0.038 | 0.03 | 0.14 | …. | ||
…. | …. | …. | …. | <0.001 | …. | …. | …. | 0.04 | …. | …. | …. | 0.36 | …. | …. | …. | 0.35 | …. | …. | …. | 0.83 | …. | …. | …. | 0.28 | ||
…. | …. | …. | …. | 0.43 | …. | …. | …. | 0.46 | …. | …. | …. | 0.51 | …. | …. | …. | 0.43 | …. | …. | …. | 0.43 | …. | …. | …. | 0.44 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.44 | …. | …. | …. | −0.48 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | 0.38 | …. | …. | …. | 0.04 | …. | …. | …. | 0.63 | |
AIC | …. | …. | …. | …. | −54.35 | …. | …. | …. | −56.27 | …. | …. | …. | −55.19 | …. | …. | …. | −53.22 | …. | …. | …. | −52.40 | …. | …. | …. | −53.52 | |
Intercept | 0.53 | 0.05 | <0.001 | …. | …. | 0.09 | 0.09 | 0.27 | …. | 0.47 | 0.18 | 0.009 | …. | 0.59 | 0.09 | <0.001 | …. | 0.57 | 0.05 | <0.001 | …. | 0.62 | 0.06 | <0.001 | …. | |
0.12 | 0.01 | <0.001 | 1.07 | …. | 0.08 | 0.01 | <0.001 | …. | 0.08 | 0.01 | <0.001 | …. | 0.08 | 0.01 | <0.001 | …. | 0.12 | 0.01 | <0.001 | …. | 0.08 | 0.01 | <0.001 | …. | ||
0.01 | 0.01 | 0.44 | 1.14 | …. | −0.009 | 0.01 | 0.39 | …. | −0.01 | 0.01 | 0.22 | …. | −0.009 | 0.01 | 0.40 | …. | 0.01 | 0.01 | 0.44 | …. | −0.01 | 0.01 | 0.20 | …. | ||
0.07 | 0.02 | 0.006 | 1.08 | …. | 0.04 | 0.02 | 0.02 | …. | 0.05 | 0.02 | 0.009 | …. | 0.05 | 0.02 | 0.01 | …. | 0.04 | 0.02 | 0.08 | …. | 0.07 | 0.02 | <0.001 | …. | ||
…. | …. | …. | …. | <0.001 | …. | …. | …. | <0.001 | …. | …. | …. | 0.60 | …. | …. | …. | <0.001 | …. | …. | …. | 0.18 | …. | …. | …. | <0.001 | ||
…. | …. | …. | …. | 0.57 | …. | …. | …. | 0.70 | …. | …. | …. | 0.73 | …. | …. | …. | 0.68 | …. | …. | …. | 0.58 | …. | …. | …. | 0.68 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.67 | …. | …. | …. | 0.20 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | 0.84 | …. | …. | …. | 0.31 | …. | …. | …. | 2.06 | |
AIC | …. | …. | …. | …. | −76.74 | …. | …. | …. | −97.91 | …. | …. | …. | −98.44 | …. | …. | …. | −92.92 | …. | …. | …. | −76.50 | …. | …. | …. | −93.94 |
Independent variables were
AIC, Akaike information criterion; CAR, conditional autoregressive; OLS, ordinary least squares;
Coefficient estimates and SE for the OLS, SLM, SDM, SEM, CAR, and SARMA multiple regression models and associated VIF and
Intercept | 0.11 | 0.19 | 0.59 | …. | …. | 0.05 | 0.26 | 0.84 | …. | −1.19 | 1.28 | 0.35 | …. | 0.10 | 0.19 | 0.60 | …. | 0.11 | 0.19 | 0.57 | …. | 0.09 | 0.19 | 0.62 | …. | |
0.39 | 0.09 | <0.001 | 1.02 | …. | 0.38 | 0.09 | <0.001 | …. | 0.42 | 0.10 | <0.001 | …. | 0.39 | 0.09 | <0.001 | …. | 0.39 | 0.09 | <0.001 | …. | 0.40 | 0.09 | <0.001 | …. | ||
0.02 | 0.08 | 0.82 | 1.02 | …. | 0.02 | 0.07 | 0.79 | …. | 0.06 | 0.08 | 0.46 | …. | 0.02 | 0.07 | 0.83 | …. | 0.01 | 0.07 | 0.87 | …. | 0.02 | 0.07 | 0.83 | …. | ||
…. | …. | …. | …. | <0.001 | …. | …. | …. | 0.75 | …. | …. | …. | 0.56 | …. | …. | …. | 0.83 | …. | …. | …. | 0.85 | …. | …. | …. | 0.75 | ||
…. | …. | …. | …. | 0.23 | …. | …. | …. | 0.23 | …. | …. | …. | 0.25 | …. | …. | …. | 0.23 | …. | …. | …. | 0.23 | …. | …. | …. | 0.23 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.11 | …. | …. | …. | −0.27 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.10 | …. | …. | …. | −0.14 | …. | …. | …. | −0.18 | |
AIC | …. | …. | …. | …. | 126.36 | …. | …. | …. | 128.26 | …. | …. | …. | 130.39 | …. | …. | …. | 128.32 | …. | …. | …. | 128.33 | …. | …. | …. | 128.26 | |
Intercept | 0.32 | 0.48 | 0.52 | …. | …. | 0.55 | 0.70 | 0.43 | …. | −3.38 | 1.69 | 0.04 | …. | 0.19 | 0.44 | 0.66 | …. | 0.07 | 0.44 | 0.86 | …. | −0.09 | 0.25 | 0.72 | …. | |
0.59 | 0.7 | 0.03 | 1.0 | …. | 0.60 | 0.26 | 0.02 | …. | 0.64 | 0.25 | 0.01 | …. | 0.64 | 0.25 | 0.01 | …. | 0.69 | 0.25 | 0.005 | …. | 0.71 | 0.11 | <0.001 | …. | ||
0.10 | 0.22 | 0.67 | 1.0 | …. | 0.10 | 0.22 | 0.63 | …. | 0.26 | 0.21 | 0.22 | …. | 0.14 | 0.22 | 0.49 | …. | 0.15 | 0.22 | 0.49 | …. | 0.39 | 0.21 | 0.06 | …. | ||
…. | …. | …. | …. | 0.08 | …. | …. | …. | 0.61 | …. | …. | …. | 0.09 | …. | …. | …. | 0.36 | …. | …. | …. | 0.35 | …. | …. | …. | <0.001 | ||
…. | …. | …. | …. | 0.08 | …. | …. | …. | 0.09 | …. | …. | …. | 0.17 | …. | …. | …. | 0.09 | …. | …. | …. | 0.09 | …. | …. | …. | 0.33 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | −0.21 | …. | …. | …. | −0.85 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.44 | …. | …. | …. | −1.02 | …. | …. | …. | −0.99 | |
AIC | …. | …. | …. | …. | 206.40 | …. | …. | …. | 208.14 | …. | …. | …. | 206.19 | …. | …. | …. | 207.56 | …. | …. | …. | 207.53 | …. | …. | …. | 189.57 | |
Intercept | 0.48 | 0.14 | 0.001 | …. | …. | 0.51 | 0.25 | 0.04 | …. | −0.03 | 0.43 | 0.94 | …. | 0.46 | 0.13 | <0.001 | …. | 0.48 | 0.13 | <0.001 | …. | 0.45 | 0.12 | <0.001 | …. | |
0.09 | 0.12 | 0.42 | 1.0 | …. | 0.10 | 0.11 | 0.38 | …. | −0.04 | 0.15 | 0.81 | …. | 0.11 | 0.11 | 0.30 | …. | 0.09 | 0.11 | 0.42 | …. | 0.12 | 0.10 | 0.22 | …. | ||
−0.01 | 0.07 | 0.85 | 1.0 | …. | −0.01 | 0.07 | 0.85 | …. | −0.006 | 0.07 | 0.93 | …. | −0.01 | 0.07 | 0.87 | …. | −0.01 | 0.07 | 0.88 | …. | −0.01 | 0.06 | 0.87 | …. | ||
…. | …. | …. | …. | 0.71 | …. | …. | …. | 0.88 | …. | …. | …. | 0.69 | …. | …. | …. | 0.72 | …. | …. | …. | 0.78 | …. | …. | …. | 0.65 | ||
…. | …. | …. | …. | 0.01 | …. | …. | …. | 0.01 | …. | …. | …. | 0.06 | …. | …. | …. | 0.01 | …. | …. | …. | 0.01 | …. | …. | …. | 0.01 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | −0.06 | …. | …. | …. | −0.17 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.17 | …. | …. | …. | −0.21 | …. | …. | …. | −0.27 | |
AIC | …. | …. | …. | …. | 134.05 | …. | …. | …. | 136.03 | …. | …. | …. | 137.17 | …. | …. | …. | 135.92 | …. | …. | …. | 135.97 | …. | …. | …. | 135.84 | |
Intercept | 0.80 | 0.49 | 0.11 | …. | …. | 0.61 | 0.73 | 0.40 | …. | 1.06 | 1.35 | 0.43 | …. | 0.59 | 0.43 | 0.18 | …. | 0.69 | 0.47 | 0.14 | …. | 0.70 | 0.46 | 0.13 | …. | |
0.47 | 0.22 | 0.04 | 1.0 | …. | 0.45 | 0.22 | 0.04 | …. | 0.34 | 0.21 | 0.10 | …. | 0.52 | 0.20 | 0.01 | …. | 0.53 | 0.21 | 0.01 | …. | 0.50 | 0.21 | 0.02 | …. | ||
0.26 | 0.14 | 0.06 | 1.0 | …. | 0.24 | 0.14 | 0.08 | …. | 0.08 | 0.14 | 0.58 | …. | 0.36 | 0.12 | 0.003 | …. | 0.26 | 0.13 | 0.05 | …. | 0.31 | 0.13 | 0.02 | …. | ||
…. | …. | …. | …. | 0.03 | …. | …. | …. | 0.66 | …. | …. | …. | 0.06 | …. | …. | …. | 0.51 | …. | …. | …. | 0.71 | …. | …. | …. | 0.66 | ||
…. | …. | …. | …. | 0.12 | …. | …. | …. | 0.12 | …. | …. | …. | 0.29 | …. | …. | …. | 0.13 | …. | …. | …. | 0.12 | …. | …. | …. | 0.12 | ||
ρ | …. | …. | …. | …. | …. | …. | …. | …. | 0.13 | …. | …. | …. | −0.82 | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | |
λ | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | …. | −0.40 | …. | …. | …. | −0.24 | …. | …. | …. | −0.16 | |
AIC | …. | …. | …. | …. | 190.27 | …. | …. | …. | 192.08 | …. | …. | …. | 183.53 | …. | …. | …. | 191.85 | …. | …. | …. | 192.14 | …. | …. | …. | 192.08 |
Independent variables were
AIC, Akaike information criterion; CAR, conditional autoregressive; OLS, ordinary least squares;
This study illustrates the widespread prevalence of
Spatial autocorrelation reflects processes that generate similarities between the values in nearby locations. This process is important for describing spillover effects, where, for example, a soilborne pathogen infestation in one location could influence other sites via active or passive secondary dispersal, leading to a disease outbreak across the field. If disease genesis is influenced by random factors or events in the fields, the spatial autocorrelation of disease incidence will tend to be low. In this study, there was significant spatial aggregation of disease severity,
Our results are in line with previous studies where disease severity,
This study enhanced our understanding of the connections between disease severity, soil texture, elevation, and
In PNW red raspberry fields,
Based on this study, it would be difficult to move away from full field soil fumigation to control