This work is licensed under the Creative Commons Attribution 4.0 International License.
Vijayan V, Connolly JP, Condell J, McKelvey N and Gardiner P. Review of wearable devices and data collection considerations for connected health. Sensors 2021; vol. 21. Publisher: MDPIVijayanVConnollyJPCondellJMcKelveyNGardinerP.Review of wearable devices and data collection considerations for connected health. Sensors2021; vol. 21. Publisher: MDPISearch in Google Scholar
Mizuno A, Changolkar S and Patel MS. Wearable devices to monitor and reduce the risk of cardiovascular disease: evidence and opportunities. Annual review of medicine 2021; vol. 72. Publisher: Annual Reviews:459–71MizunoAChangolkarSPatelMS.Wearable devices to monitor and reduce the risk of cardiovascular disease: evidence and opportunities. Annual review of medicine2021; vol. 72. Publisher: Annual Reviews:459–71Search in Google Scholar
Miao F, Wu D, Liu Z, Zhang R, Tang M and Li Y. Wearable sensing, big data technology for cardiovascular healthcare: current status and future prospective. Chinese Medical Journal 2023; vol. 136. Publisher: Chinese Medical Journals Publishing House Co., Ltd. 42 Dongsi Xidajie:1015–25MiaoFWuDLiuZZhangRTangMLiY.Wearable sensing, big data technology for cardiovascular healthcare: current status and future prospective. Chinese Medical Journal2023; vol. 136. Publisher: Chinese Medical Journals Publishing House Co., Ltd. 42 Dongsi Xidajie:1015–25Search in Google Scholar
Silverio EAA. A high output impedance current source for wideband bioimpedance specroscopy using 0.35μM TSMC CMOS technology. en. International Journal of Engineering and Applied Sciences 2012; vol. 1SilverioEAA.A high output impedance current source for wideband bioimpedance specroscopy using 0.35μM TSMC CMOS technology. en. International Journal of Engineering and Applied Sciences2012; vol. 1Search in Google Scholar
Xu J, Harpe P and Van Hoof C. An Energy-Efficient and Reconfigurable Sensor IC for Bio-Impedance Spectroscopy and ECG Recording. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2018 Sep; 8. Conference Name: IEEE Journal on Emerging and Selected Topics in Circuits and Systems:616–26. DOI: 10.1109/JETCAS.2018.2834140XuJHarpePVan HoofC.An Energy-Efficient and Reconfigurable Sensor IC for Bio-Impedance Spectroscopy and ECG Recording. IEEE Journal on Emerging and Selected Topics in Circuits and Systems2018Sep;8. Conference Name: IEEE Journal on Emerging and Selected Topics in Circuits and Systems:616–26. DOI: 10.1109/JETCAS.2018.2834140Open DOISearch in Google Scholar
Stupin DD, Kuzina EA, Abelit AA, Emelyanov AK, Nikolaev DM, Ryazantsev MN, Koniakhin SV and Dubina MV. Bioimpedance Spectroscopy: Basics and Applications. ACS Biomaterials Science & Engineering 2021 Jun; vol. 7. Publisher: American Chemical Society:1962–86. DOI: 10.1021/acsbiomaterials.0c01570StupinDDKuzinaEAAbelitAAEmelyanovAKNikolaevDMRyazantsevMNKoniakhinSVDubinaMV.Bioimpedance Spectroscopy: Basics and Applications. ACS Biomaterials Science & Engineering2021Jun; vol. 7. Publisher: American Chemical Society:1962–86. DOI: 10.1021/acsbiomaterials.0c01570Open DOISearch in Google Scholar
Sirtoli V, Morcelles K, Gomez J and Bertemes-Filho P. Design and Evaluation of an Electrical Bioimpedance Device Based on DIBS for Myography during Isotonic Exercises. en. Journal of Low Power Electronics and Applications 2018 Dec; 8. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute:50. DOI: 10.3390/jlpea8040050SirtoliVMorcellesKGomezJBertemes-FilhoP.Design and Evaluation of an Electrical Bioimpedance Device Based on DIBS for Myography during Isotonic Exercises. en. Journal of Low Power Electronics and Applications2018Dec; 8. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute:50. DOI: 10.3390/jlpea8040050Open DOISearch in Google Scholar
Bertemes-Filho P, Vincence VC, Santos MM and Zanatta IX. Low power current sources for bioimpedance measurements: a comparison between Howland and OTA-based CMOS circuits. en. Journal of Electrical Bioimpedance 2011 Dec; vol. 3:66–73. DOI: 10.5617/jeb.380Bertemes-FilhoPVincenceVCSantosMMZanattaIX.Low power current sources for bioimpedance measurements: a comparison between Howland and OTA-based CMOS circuits. en. Journal of Electrical Bioimpedance2011Dec; vol. 3:66–73. DOI: 10.5617/jeb.380Open DOISearch in Google Scholar
Bendre V and Kureshi A. Performance analysis of operational transconductance amplifier at 180nm technology. 2016 Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH). 2016 Nov:271–6. DOI: 10.1109/CIPECH.2016.7918781BendreVKureshiA.Performance analysis of operational transconductance amplifier at 180nm technology. 2016 Second International Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity (CIPECH). 2016Nov:271–6. DOI: 10.1109/CIPECH.2016.7918781Open DOISearch in Google Scholar
Bertemes-Filho P. Designing a current source. Bioimpedance and Spectroscopy. Ed. by Annus P and Min M. Academic Press, 2021 Jan:79–98. DOI: 10.1016/B978-0-12-818614-5.00003-5Bertemes-FilhoP.Designing a current source. Bioimpedance and Spectroscopy. Ed. by AnnusPMinM.Academic Press, 2021Jan:79–98. DOI: 10.1016/B978-0-12-818614-5.00003-5Open DOISearch in Google Scholar
Marcondes DWC, Bertemes-Filho P and Paterno AS. Current Oscillator Based on Pyragas Model for Electrical Bioimpedance Applications. en. Electronics 2022 Jan; vol. 11. Number: 17 Publisher: Multidisciplinary Digital Publishing Institute. DOI: 10.3390/electronics11172653MarcondesDWCBertemes-FilhoPPaternoAS.Current Oscillator Based on Pyragas Model for Electrical Bioimpedance Applications. en. Electronics2022Jan; vol. 11. Number: 17 Publisher: Multidisciplinary Digital Publishing Institute. DOI: 10.3390/electronics11172653Open DOISearch in Google Scholar
Yang Y, Kang M, Lu Y, Wang J, Yue J and Gao Z. Design of a wideband excitation source for fast bioimpedance spectroscopy. en. Measurement Science and Technology 2010 Nov; vol. 22. Publisher: IOP Publishing. DOI: 10.1088/0957-0233/22/1/013001YangYKangMLuYWangJYueJGaoZ.Design of a wideband excitation source for fast bioimpedance spectroscopy. en. Measurement Science and Technology2010Nov; vol. 22. Publisher: IOP Publishing. DOI: 10.1088/0957-0233/22/1/013001Open DOISearch in Google Scholar
Morcelles KF, Sirtoli VG, Bertemes-Filho P and Vincence VC. Howland current source for high impedance load applications. en. Review of Scientific Instruments 2017 Nov; vol. 88. DOI: 10.1063/1.5005330MorcellesKFSirtoliVGBertemes-FilhoPVincenceVC.Howland current source for high impedance load applications. en. Review of Scientific Instruments2017Nov; vol. 88. DOI: 10.1063/1.5005330Open DOISearch in Google Scholar
Fernández Schrunder A and Rusu A. A Low-Distortion Current-Mode Signal Generator for Wide-Range Bioimpedance Spectroscopy. eng. Proceedings of 56th IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2023Fernández SchrunderARusuA.A Low-Distortion Current-Mode Signal Generator for Wide-Range Bioimpedance Spectroscopy, eng. Proceedings of 56th IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2023Search in Google Scholar
Stornelli V, Ferri G, Pantoli L, Barile G and Pennisi S. A rail-to-rail constant-g m CCII for Instrumentation Amplifier applications. en. AEU - International Journal of Electronics and Communications 2018 Jul; 91:103–9. DOI: 10.1016/j.aeue.2018.04.029StornelliVFerriGPantoliLBarileGPennisiS.A rail-to-rail constant-g m CCII for Instrumentation Amplifier applications. en. AEU - International Journal of Electronics and Communications2018Jul; 91:103–9. DOI: 10.1016/j.aeue.2018.04.029Open DOISearch in Google Scholar
Tanguay LF, Sawan M and Savaria Y. A very-high output impedance current mirror for very-low voltage biomedical analog circuits. APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems. 2008. DOI: 10.1109/APCCAS.2008.4746105TanguayLFSawanMSavariaY.A very-high output impedance current mirror for very-low voltage biomedical analog circuits. APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems. 2008. DOI: 10.1109/APCCAS.2008.4746105Open DOISearch in Google Scholar
Zarafshani A, Bach T, Chatwin C, Xiang L and Zheng B. Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects. Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging. Vol. 10137. SPIE, 2017 Mar:507–17. DOI: 10.1117/12.2254629ZarafshaniABachTChatwinCXiangLZhengB.Current source enhancements in Electrical Impedance Spectroscopy (EIS) to cancel unwanted capacitive effects. Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging. Vol. 10137. SPIE, 2017Mar:507–17. DOI: 10.1117/12.2254629Open DOISearch in Google Scholar
Roy A, Bhattacharjee S, Podder S, Ghosh A, Roy A, Bhattacharjee S, Podder S and Ghosh A. Measurement of bioimpedance and application of Cole model to study the effect of moisturizing cream on human skin. en. AIMS Biophysics 2020; vol. 7:362–79. DOI: 10.3934/biophy.2020025RoyABhattacharjeeSPodderSGhoshARoyABhattacharjeeSPodderSGhoshA.Measurement of bioimpedance and application of Cole model to study the effect of moisturizing cream on human skin. en. AIMS Biophysics2020; vol. 7:362–79. DOI: 10.3934/biophy.2020025Open DOISearch in Google Scholar
Schneider MC and Galup-Montoro C. CMOS analog design using all-region MOSFET modeling. Cambridge University Press, 2010SchneiderMCGalup-MontoroC.CMOS analog design using all-region MOSFET modeling. Cambridge University Press, 2010Search in Google Scholar
Pliquett U, Schönfeldt M, Barthel A, Frense D, Nacke T and Beckmann D. Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy. en. Physiological Measurement 2011 Jun. DOI: 10.1088/0967-3334/32/7/S15PliquettUSchönfeldtMBarthelAFrenseDNackeTBeckmannD.Front end with offset-free symmetrical current source optimized for time domain impedance spectroscopy. en. Physiological Measurement2011Jun. DOI: 10.1088/0967-3334/32/7/S15Open DOISearch in Google Scholar
Tucker AS, Fox RM and Sadleir RJ. Biocompatible, High Precision, Wideband, Improved Howland Current Source With Lead-Lag Compensation. IEEE Transactions on Biomedical Circuits and Systems 2013 Feb; vol. 7:63–70. DOI: 10.1109/TBCAS.2012.2199114TuckerASFoxRMSadleirRJ.Biocompatible, High Precision, Wideband, Improved Howland Current Source With Lead-Lag Compensation. IEEE Transactions on Biomedical Circuits and Systems2013Feb; vol. 7:63–70. DOI: 10.1109/TBCAS.2012.2199114Open DOISearch in Google Scholar
Bertemes-Filho P. Tissue Characterisation using an Impedance Spectroscopy Probe. en. PhD thesis. University of Sheffield, 2002Bertemes-FilhoP.Tissue Characterisation using an Impedance Spectroscopy Probe. en. PhD thesis. University of Sheffield, 2002Search in Google Scholar
Bertemes-Filho P, Felipe A and Vincence VC. High Accurate Howland Current Source: Output Constraints Analysis. en. Circuits and Systems 2013; vol. 4:451–8. DOI: 10.4236/cs.2013.47059Bertemes-FilhoPFelipeAVincenceVC.High Accurate Howland Current Source: Output Constraints Analysis. en. Circuits and Systems2013; vol. 4:451–8. DOI: 10.4236/cs.2013.47059Open DOISearch in Google Scholar
A Comprehensive Study of the Howland Current Pump. Texas Instruments. Available from: https://www.ti.com/lit/an/snoa474a/snoa474a.pdfA Comprehensive Study of the Howland Current Pump. Texas Instruments. Available from: https://www.ti.com/lit/an/snoa474a/snoa474a.pdfSearch in Google Scholar
Radin RL, Moreira GL, Galup-Montoro C and Schneider MC. A simple modeling of the early voltage of MOSFETs in weak and moderate inversion. 2008 IEEE International Symposium on Circuits and Systems (ISCAS). 2008. DOI: 10.1109/ISCAS.2008.4541769RadinRLMoreiraGLGalup-MontoroCSchneiderMC.A simple modeling of the early voltage of MOSFETs in weak and moderate inversion. 2008 IEEE International Symposium on Circuits and Systems (ISCAS). 2008. DOI: 10.1109/ISCAS.2008.4541769Open DOISearch in Google Scholar
Casañas CWV, Castro THPd, Souza GAFd, Moreno RL and Colombo DM. A Review of CMOS Currente References. en. Journal of Integrated Circuits and Systems 2022 Apr; vol. 17:1–9. DOI: 10.29292/jics.v17i1.592CasañasCWVCastroTHPdSouzaGAFdMorenoRLColomboDM.A Review of CMOS Currente References. en. Journal of Integrated Circuits and Systems2022Apr; vol. 17:1–9. DOI: 10.29292/jics.v17i1.592Open DOISearch in Google Scholar
Kusche R, Oltmann A and Rostalski P. A Wearable Dual-Channel Bioimpedance Spectrometer for Real-Time Muscle Contraction Detection. en. IEEE Sensors Journal 2024. DOI: 10.1109/JSEN.2024.3359284KuscheROltmannARostalskiP.A Wearable Dual-Channel Bioimpedance Spectrometer for RealTime Muscle Contraction Detection. en. IEEE Sensors Journal2024. DOI: 10.1109/JSEN.2024.3359284Open DOISearch in Google Scholar