Cite

Susmallian S GD, Barnea R, Raziel A. Correct Evaluation of Gastric Wall Thickness May Support a Change in Staplers Size When Performing Sleeve Gastrectomy. The Israel Medical Association Journal: IMAJ. 2017;19:351–4. https://doi.org/10.1016/j.clnesp.2017.02.002 SusmallianS GD BarneaR RazielA Correct Evaluation of Gastric Wall Thickness May Support a Change in Staplers Size When Performing Sleeve Gastrectomy The Israel Medical Association Journal: IMAJ 2017 19 351 4 https://doi.org/10.1016/j.clnesp.2017.02.002 10.1016/j.clnesp.2017.02.002 Search in Google Scholar

Chekan E, Whelan RL. Surgical stapling device-tissue interactions: what surgeons need to know to improve patient outcomes. Med Devices (Auckl). 2014;7:305–18. https://doi.org/10.2147/MDER.S67338 ChekanE WhelanRL Surgical stapling device-tissue interactions: what surgeons need to know to improve patient outcomes Med Devices (Auckl) 2014 7 305 18 https://doi.org/10.2147/MDER.S67338 10.2147/MDER.S67338416887025246812 Search in Google Scholar

Eriksson S, Nilsson J, Sturesson C. Non-invasive imaging of microcirculation: a technology review. Med Devices (Auckl). 2014;7:445–52. https://doi.org/10.2147/MDER.S51426 ErikssonS NilssonJ SturessonC Non-invasive imaging of microcirculation: a technology review Med Devices (Auckl) 2014 7 445 52 https://doi.org/10.2147/MDER.S51426 10.2147/MDER.S51426426758625525397 Search in Google Scholar

Baker RS, Foote J, Kemmeter P, Brady R, Vroegop T, Serveld M. The Science of Stapling and Leaks. Obesity Surgery. 2004;14(10):1290–8. https://doi.org/10.1381/0960892042583888 BakerRS FooteJ KemmeterP BradyR VroegopT ServeldM The Science of Stapling and Leaks Obesity Surgery 2004 14 10 1290 8 https://doi.org/10.1381/0960892042583888 10.1381/096089204258388815603641 Search in Google Scholar

Cheng Z, Dall'Alba D, Foti S, Mariani A, Chupin T, Caldwell DG, et al. Design and Integration of Electrical Bioimpedance Sensing in Surgical Robotic Tools for Tissue Identification and Display. Front Robot AI. 2019;6:55. https://doi.org/10.3389/frobt.2019.00055 ChengZ Dall'AlbaD FotiS MarianiA ChupinT CaldwellDG Design and Integration of Electrical Bioimpedance Sensing in Surgical Robotic Tools for Tissue Identification and Display Front Robot AI 2019 6 55 https://doi.org/10.3389/frobt.2019.00055 10.3389/frobt.2019.00055780599033501070 Search in Google Scholar

Rigaud B, Hamzaoui L, Frikha MR, Chauveau N, Morucci JP. In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range. Physiological Measurement. 1995;16(3A):A15–A28. https://doi.org/10.1088/0967-3334/16/3A/002 RigaudB HamzaouiL FrikhaMR ChauveauN MorucciJP In vitro tissue characterization and modelling using electrical impedance measurements in the 100 Hz-10 MHz frequency range Physiological Measurement 1995 16 3A A15 A28 https://doi.org/10.1088/0967-3334/16/3A/002 10.1088/0967-3334/16/3A/002 Search in Google Scholar

Ruiz-Vargas A, Ivorra A, Arkwright JW. Design, Construction and Validation of an Electrical Impedance Probe with Contact Force and Temperature Sensors Suitable for in-vivo Measurements. Sci Rep. 2018;8(1):14818. https://doi.org/10.1038/s41598-018-33221-4 Ruiz-VargasA IvorraA ArkwrightJW Design, Construction and Validation of an Electrical Impedance Probe with Contact Force and Temperature Sensors Suitable for in-vivo Measurements Sci Rep 2018 8 1 14818 https://doi.org/10.1038/s41598-018-33221-4 10.1038/s41598-018-33221-4617225530287842 Search in Google Scholar

Adler A, Boyle A. Electrical Impedance Tomography: Tissue Properties to Image Measures. IEEE Transactions on Biomedical Engineering. 2017;64(11):2494–504. https://doi.org/10.1109/TBME.2017.2728323 AdlerA BoyleA Electrical Impedance Tomography: Tissue Properties to Image Measures IEEE Transactions on Biomedical Engineering 2017 64 11 2494 504 https://doi.org/10.1109/TBME.2017.2728323 10.1109/TBME.2017.272832328715324 Search in Google Scholar

Karande VC. LigaSure™ 5-mm Blunt Tip Laparoscopic Instrument. J Obstet Gynaecol India. 2015;65(5):350–2. https://doi.org/10.1007/s13224-015-0745-2 KarandeVC LigaSure™ 5-mm Blunt Tip Laparoscopic Instrument J Obstet Gynaecol India 2015 65 5 350 2 https://doi.org/10.1007/s13224-015-0745-2 10.1007/s13224-015-0745-2457915426405409 Search in Google Scholar

Bera TK. Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review. J Med Eng. 2014;2014:381251. https://doi.org/10.1155/2014/381251 BeraTK Bioelectrical Impedance Methods for Noninvasive Health Monitoring: A Review J Med Eng 2014 2014 381251 https://doi.org/10.1155/2014/381251 10.1155/2014/381251478269127006932 Search in Google Scholar

Martinsen OG, Grimnes SG, Schwan HP. Interface phenomena and dielectric properties of biological tissue. Encycl Surf Colloid Sci. 2002:2643–52. MartinsenOG GrimnesSG SchwanHP Interface phenomena and dielectric properties of biological tissue Encycl Surf Colloid Sci 2002 2643 52 Search in Google Scholar

Ramírez-Chavarría RG, Sánchez-Pérez C, Matatagui D, Qureshi N, Pérez-García A, Hernández-Ruíz J. Ex-vivo biological tissue differentiation by the Distribution of Relaxation Times method applied to Electrical Impedance Spectroscopy. Electrochimica Acta. 2018;276:214–22. https://doi.org/10.1016/j.electacta.2018.04.167 Ramírez-ChavarríaRG Sánchez-PérezC MatataguiD QureshiN Pérez-GarcíaA Hernández-RuízJ Ex-vivo biological tissue differentiation by the Distribution of Relaxation Times method applied to Electrical Impedance Spectroscopy Electrochimica Acta 2018 276 214 22 https://doi.org/10.1016/j.electacta.2018.04.167 10.1016/j.electacta.2018.04.167 Search in Google Scholar

Gregory WD, Marx JJ, Gregory CW, Mikkelson WM, Tjoe JA, Shell J. The Cole relaxation frequency as a parameter to identify cancer in breast tissue. Medical Physics. 2012;39(7 Part1):4167–74. https://doi.org/10.1118/1.4725172 GregoryWD MarxJJ GregoryCW MikkelsonWM TjoeJA ShellJ The Cole relaxation frequency as a parameter to identify cancer in breast tissue Medical Physics 2012 39 7 Part1 4167 74 https://doi.org/10.1118/1.4725172 10.1118/1.472517222830750 Search in Google Scholar

Halter RJ, Hartov A, Heaney JA, Paulsen KD, Schned AR. Electrical Impedance Spectroscopy of the Human Prostate. IEEE Transactions on Biomedical Engineering. 2007;54(7):1321–7. https://doi.org/10.1109/TBME.2007.897331 HalterRJ HartovA HeaneyJA PaulsenKD SchnedAR Electrical Impedance Spectroscopy of the Human Prostate IEEE Transactions on Biomedical Engineering 2007 54 7 1321 7 https://doi.org/10.1109/TBME.2007.897331 10.1109/TBME.2007.89733117605363 Search in Google Scholar

Laufer S, Ivorra A, Reuter VE, Rubinsky B, Solomon SB. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiological Measurement. 2010;31(7):995–1009. https://doi.org/10.1088/0967-3334/31/7/009 LauferS IvorraA ReuterVE RubinskyB SolomonSB Electrical impedance characterization of normal and cancerous human hepatic tissue Physiological Measurement 2010 31 7 995 1009 https://doi.org/10.1088/0967-3334/31/7/009 10.1088/0967-3334/31/7/00920577035 Search in Google Scholar

Dzwonczyk R, Rio Cd, Brown DA, Michler RE, Wolf RK, Howie MB. Myocardial electrical impedance responds to ischemia and reperfusion in humans. IEEE Transactions on Biomedical Engineering. 2004;51(12):2206–9. https://doi.org/10.1109/TBME.2004.834297 DzwonczykR RioCd BrownDA MichlerRE WolfRK HowieMB Myocardial electrical impedance responds to ischemia and reperfusion in humans IEEE Transactions on Biomedical Engineering 2004 51 12 2206 9 https://doi.org/10.1109/TBME.2004.834297 10.1109/CIC.2002.1166829 Search in Google Scholar

Yang L, Zhang G, Song J, Dai M, Xu C, Dong X, et al. Ex-Vivo Characterization of Bioimpedance Spectroscopy of Normal, Ischemic and Hemorrhagic Rabbit Brain Tissue at Frequencies from 10 Hz to 1 MHz. Sensors (Basel). 2016;16(11):1942. https://doi.org/10.3390/s16111942 YangL ZhangG SongJ DaiM XuC DongX Ex-Vivo Characterization of Bioimpedance Spectroscopy of Normal, Ischemic and Hemorrhagic Rabbit Brain Tissue at Frequencies from 10 Hz to 1 MHz Sensors (Basel) 2016 16 11 1942 https://doi.org/10.3390/s16111942 10.3390/s16111942513460127869707 Search in Google Scholar

Dai Y, Du J, Yang Q, Zhang J. Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies. Bioelectromagnetics. 2014;35(6):385–95. https://doi.org/10.1002/bem.21854 DaiY DuJ YangQ ZhangJ Noninvasive electrical impedance sensor for in vivo tissue discrimination at radio frequencies Bioelectromagnetics 2014 35 6 385 95 https://doi.org/10.1002/bem.21854 10.1002/bem.2185424764269 Search in Google Scholar

Cole K, Curtis H. Electrical physiology: Electrical resistance and impedance of cells and tissues, in Medical Physics. New York: Year Book Publishers; 1944. ColeK CurtisH Electrical physiology: Electrical resistance and impedance of cells and tissues, in Medical Physics New York Year Book Publishers 1944 Search in Google Scholar

Gholami-Boroujeny S, Bolic M. Extraction of Cole parameters from the electrical bioimpedance spectrum using stochastic optimization algorithms. Med Biol Eng Comput. 2016;54(4):643–51. https://doi.org/10.1007/s11517-015-1355-y Gholami-BoroujenyS BolicM Extraction of Cole parameters from the electrical bioimpedance spectrum using stochastic optimization algorithms Med Biol Eng Comput 2016 54 4 643 51 https://doi.org/10.1007/s11517-015-1355-y 10.1007/s11517-015-1355-y26215520 Search in Google Scholar

Seoane F, Buendia R, Gil-Pita R. Cole parameter estimation from electrical bioconductance spectroscopy measurements. Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:3495–8. https://doi.org/10.1109/IEMBS.2010.5627790 SeoaneF BuendiaR Gil-PitaR Cole parameter estimation from electrical bioconductance spectroscopy measurements Annu Int Conf IEEE Eng Med Biol Soc 2010 2010 3495 8 https://doi.org/10.1109/IEMBS.2010.5627790 10.1109/IEMBS.2010.562779021097029 Search in Google Scholar

Ayllon D, Seoane F, Gil-Pita R. Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements - A comparative study. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3779–82. https://doi.org/10.1109/IEMBS.2009.5334494 AyllonD SeoaneF Gil-PitaR Cole equation and parameter estimation from electrical bioimpedance spectroscopy measurements - A comparative study Annu Int Conf IEEE Eng Med Biol Soc 2009 2009 3779 82 https://doi.org/10.1109/IEMBS.2009.5334494 10.1109/IEMBS.2009.533449419964815 Search in Google Scholar

Bowen PK, Shearier ER, Zhao S, Guillory RJ, 2nd, Zhao F, Goldman J, et al. Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys. Advanced healthcare materials. 2016;5(10):1121–40. https://doi.org/10.1002/adhm.201501019 BowenPK ShearierER ZhaoS GuilloryRJ2nd ZhaoF GoldmanJ Biodegradable Metals for Cardiovascular Stents: from Clinical Concerns to Recent Zn-Alloys Advanced healthcare materials 2016 5 10 1121 40 https://doi.org/10.1002/adhm.201501019 10.1002/adhm.201501019490422627094868 Search in Google Scholar

Schmidt J, Marques MRG, Botti S, Marques MAL. Recent advances and applications of machine learning in solid-state materials science. npj Computational Materials. 2019;5(1):83. https://doi.org/10.1038/s41524-019-0221-0 SchmidtJ MarquesMRG BottiS MarquesMAL Recent advances and applications of machine learning in solid-state materials science npj Computational Materials 2019 5 1 83 https://doi.org/10.1038/s41524-019-0221-0 10.1038/s41524-019-0221-0 Search in Google Scholar

Kalvoy H, Tronstad C, Ullensvang K, Steinfeldt T, Sauter AR. Detection of needle to nerve contact based on electric bioimpedance and machine learning methods. Conf Proc IEEE Eng Med Biol Soc. 2017;2017:9–12. https://doi.org/10.1109/EMBC.2017.8036750 KalvoyH TronstadC UllensvangK SteinfeldtT SauterAR Detection of needle to nerve contact based on electric bioimpedance and machine learning methods Conf Proc IEEE Eng Med Biol Soc 2017 2017 9 12 https://doi.org/10.1109/EMBC.2017.8036750 10.1109/EMBC.2017.803675029059798 Search in Google Scholar

Strand-Amundsen RJ, Tronstad C, Reims HM, Reinholt FP, Høgetveit JO, Tønnessen TI. Machine learning for intraoperative prediction of viability in ischemic small intestine. Physiological Measurement. 2018;39(10):105011. https://doi.org/10.1088/1361-6579/aae0ea Strand-AmundsenRJ TronstadC ReimsHM ReinholtFP HøgetveitJO TønnessenTI Machine learning for intraoperative prediction of viability in ischemic small intestine Physiological Measurement 2018 39 10 105011 https://doi.org/10.1088/1361-6579/aae0ea 10.1088/1361-6579/aae0ea30207981 Search in Google Scholar

Chowdhury A, Ghoshal D, Bera T, Chakraborty B, Naresh M. Comparison of two and four electrode methods for studying the impedance variation during cucumber storage using Electrical Impedance Spectroscopy (EIS). 2017. p. 261–5. https://doi.org/10.1201/9781315400624-50 ChowdhuryA GhoshalD BeraT ChakrabortyB NareshM Comparison of two and four electrode methods for studying the impedance variation during cucumber storage using Electrical Impedance Spectroscopy (EIS) 2017 261 5 https://doi.org/10.1201/9781315400624-50 10.1201/9781315400624-50 Search in Google Scholar

Gonzalez LM, Moeser AJ, Blikslager AT. Porcine models of digestive disease: the future of large animal translational research. Transl Res. 2015;166(1):12–27. https://doi.org/10.1016/j.trsl.2015.01.004 GonzalezLM MoeserAJ BlikslagerAT Porcine models of digestive disease: the future of large animal translational research Transl Res 2015 166 1 12 27 https://doi.org/10.1016/j.trsl.2015.01.004 10.1016/j.trsl.2015.01.004445838825655839 Search in Google Scholar

MathWorks. Machine Learning Toolbox [Available from: https://www.mathworks.com/help/stats/choose-a-classifier.html#bunt0ky. MathWorks Machine Learning Toolbox [Available from: https://www.mathworks.com/help/stats/choose-a-classifier.html#bunt0ky Search in Google Scholar

Rawlins L, Rawlins MP, Teel D. Human tissue thickness measurements from excised sleeve gastrectomy specimens. Surgical Endoscopy. 2014;28(3):811–4. https://doi.org/10.1007/s00464-013-3264-1 RawlinsL RawlinsMP TeelD Human tissue thickness measurements from excised sleeve gastrectomy specimens Surgical Endoscopy 2014 28 3 811 4 https://doi.org/10.1007/s00464-013-3264-1 10.1007/s00464-013-3264-124196553 Search in Google Scholar

Strand-Amundsen RJ, Tronstad C, Kalvøy H, Gundersen Y, Krohn CD, Aasen AO, et al. In vivo characterization of ischemic small intestine using bioimpedance measurements. Physiological Measurement. 2016;37(2):257–75. https://doi.org/10.1088/0967-3334/37/2/257 Strand-AmundsenRJ TronstadC KalvøyH GundersenY KrohnCD AasenAO In vivo characterization of ischemic small intestine using bioimpedance measurements Physiological Measurement 2016 37 2 257 75 https://doi.org/10.1088/0967-3334/37/2/257 10.1088/0967-3334/37/2/25726805916 Search in Google Scholar

Veal B, Baldo P, Paulikas A, Eastman J. Understanding Artifacts in Impedance Spectroscopy. Journal of the Electrochemical Society. 2015;162:H47–H57. https://doi.org/10.1149/2.0791501jes VealB BaldoP PaulikasA EastmanJ Understanding Artifacts in Impedance Spectroscopy Journal of the Electrochemical Society 2015 162 H47 H57 https://doi.org/10.1149/2.0791501jes 10.1149/2.0791501jes Search in Google Scholar

Barski K, Binda A, Kudlicka E, Jaworski P, Tarnowski W. Gastric wall thickness and stapling in laparoscopic sleeve gastrectomy - a literature review. Wideochir Inne Tech Maloinwazyjne. 2018;13(1):122–7. https://doi.org/10.5114/wiitm.2018.73362 BarskiK BindaA KudlickaE JaworskiP TarnowskiW Gastric wall thickness and stapling in laparoscopic sleeve gastrectomy - a literature review Wideochir Inne Tech Maloinwazyjne 2018 13 1 122 7 https://doi.org/10.5114/wiitm.2018.73362 10.5114/wiitm.2018.73362589085129643968 Search in Google Scholar

Moqadam S, Grewal P, Shokoufi M, Golnaraghi M. Compression-dependency of soft tissue bioimpedance for in-vivo and in-vitro tissue testing. Journal of Electrical Bioimpedance. 2015;6:22–32. https://doi.org/10.5617/jeb.1489 MoqadamS GrewalP ShokoufiM GolnaraghiM Compression-dependency of soft tissue bioimpedance for in-vivo and in-vitro tissue testing Journal of Electrical Bioimpedance 2015 6 22 32 https://doi.org/10.5617/jeb.1489 10.5617/jeb.1489 Search in Google Scholar