Acceso abierto

Possibilities in the application of machine learning on bioimpedance time-series


Cite

Grimnes S, Martinsen ØG. Bioimpedance and Bioelectricity Basics. Third ed: Academic press, Elsevier; 2015. 563 p. https://doi.org/10.1016/b978-0-12-411470-8.00011-8GrimnesSMartinsenØG.Bioimpedance and Bioelectricity Basics. Third edAcademic press, Elsevier2015563phttps://doi.org/10.1016/b978-0-12-411470-8.00011-810.1016/B978-0-12-411470-8.00011-8Search in Google Scholar

Halter RJ, Zhou T, Meaney PM, Hartov A, Barth RJ, Jr., Rosenkranz KM, et al. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience. Physiological Measurement. 2009;30(6):S121-36. https://doi.org/10.1088/0967-3334/30/6/s08HalterRJZhouTMeaneyPMHartovABarthRJJrRosenkranzKMet alThe correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experiencePhysiological Measurement2009306S12136https://doi.org/10.1088/0967-3334/30/6/s0810.1088/0967-3334/30/6/S08Search in Google Scholar

Schafer M, Schlegel C, Kirlum HJ, Gersing E, Gebhard MM. Monitoring of damage to skeletal muscle tissues caused by ischemia. Bioelectrochemistry and Bioenergetics. 1998;45:151–5. https://doi.org/10.1016/s0302-4598(98)00083-xSchaferMSchlegelCKirlumHJGersingEGebhardMMMonitoring of damage to skeletal muscle tissues caused by ischemiaBioelectrochemistry and Bioenergetics1998451515https://doi.org/10.1016/s0302-4598(98)00083-x10.1016/S0302-4598(98)00083-XSearch in Google Scholar

Gersing E. Impedance spectroscopy on living tissue for determination of the state of organs. Bioelectrochemistry and Bioenergetics. 1998;45(2 ):145-9. https://doi.org/10.1016/s0302-4598(98)00079-8GersingEImpedance spectroscopy on living tissue for determination of the state of organsBioelectrochemistry and Bioenergetics19984521459https://doi.org/10.1016/s0302-4598(98)00079-810.1016/S0302-4598(98)00079-8Search in Google Scholar

Chester CJ, Gaynor PT, Jones RD, Huckabee M-L. Electrical bioimpedance measurement as a tool for dysphagia visualisation. Healthcare Technology Letters. 2014;1(3):115-8. https://doi.org/10.1049/htl.2014.0067ChesterCJGaynorPTJonesRDHuckabeeM-LElectrical bioimpedance measurement as a tool for dysphagia visualisationHealthcare Technology Letters2014131158https://doi.org/10.1049/htl.2014.006710.1049/htl.2014.0067Search in Google Scholar

Spottorno J, Multigner M, Rivero G, Alvarez L, de la Venta J, Santos M. Time dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac current. Physics in Medicine and Biology. 2008;53(6):1701-13. https://doi.org/10.1088/0031-9155/53/6/014SpottornoJMultignerMRiveroGAlvarezLdela Venta JSantosMTime dependence of electrical bioimpedance on porcine liver and kidney under a 50 Hz ac currentPhysics in Medicine and Biology2008536170113https://doi.org/10.1088/0031-9155/53/6/01410.1088/0031-9155/53/6/014Search in Google Scholar

Martinsen ØG, Grimnes S, Mirtaheri P. Non-invasive measurements of postmortem changes in dielectric properties of haddock muscle - a pilot study. J Food Eng. 2000;43:189-92. https://doi.org/10.1016/s0260-8774(99)00151-xMartinsenØGGrimnesSMirtaheriP.Non-invasive measurements of postmortem changes in dielectric properties of haddock muscle - a pilot studyJ Food Eng20004318992https://doi.org/10.1016/s0260-8774(99)00151-x10.1016/S0260-8774(99)00151-XSearch in Google Scholar

Gheorghiu M, Gersing E. Revealing alteration of membrane structures during ischema using impedance spectroscopy. Songklanakarin J Sci Technol. 2002;24 (Suppl.):777-84.GheorghiuMGersingERevealing alteration of membrane structures during ischema using impedance spectroscopySongklanakarin J Sci Technol200224Suppl77784Search in Google Scholar

Haemmerich D, Ozkan R, Tungjitkusolmun S, Tsai JZ, Mahvi DM, Staelin ST, et al. Changes in electrical resistivity of swine liver after occlusion and postmortem. Medical & Biological Engineering & Computing. 2002;40(1):29-33. https://doi.org/10.1007/bf02347692HaemmerichDOzkanRTungjitkusolmunSTsaiJZMahviDMStaelinSTet alChanges in electrical resistivity of swine liver after occlusion and postmortemMedical & Biological Engineering & Computing20024012933https://doi.org/10.1007/bf0234769210.1007/BF0234769211954705Search in Google Scholar

Konishi Y, Morimoto T, Kinouchi Y, Iritani T, Monden Y. Electrical properties of extracted rat liver tissue. Res Exp Med (Berl). 1995;195(4):183-92. https://doi.org/10.1007/bf02576787KonishiYMorimotoTKinouchiYIritaniTMondenYElectrical properties of extracted rat liver tissueRes Exp Med (Berl)1995195418392https://doi.org/10.1007/bf0257678710.1007/BF025767878525068Search in Google Scholar

Strand-Amundsen RJ, Tronstad C, Kalvoy H, Ruud TE, Hogetveit JO, Martinsen ØG, et al. Small intestinal ischemia and reperfusion - bioimpedance measurements. Physiological Measurement. 2018;39(2):025001. https://doi.org/10.1088/1361-6579/aaa576Strand-AmundsenRJTronstadCKalvoyHRuudTEHogetveitJOMartinsenØGet alSmall intestinal ischemia and reperfusion - bioimpedance measurementsPhysiological Measurement2018392025001https://doi.org/10.1088/1361-6579/aaa57610.1088/1361-6579/aaa57629303488Search in Google Scholar

Gheorghiu M, Gersing E, Gheorghiu E. Quantitative analysis of impedance spectra of organs during ischemia. Annals of the New York Academy of Sciences. 1999;873:65-71. https://doi.org/10.1111/j.1749-6632.1999.tb09450.xGheorghiuMGersingEGheorghiuEQuantitative analysis of impedance spectra of organs during ischemiaAnnals of the New York Academy of Sciences19998736571https://doi.org/10.1111/j.1749-6632.1999.tb09450.x10.1111/j.1749-6632.1999.tb09450.xSearch in Google Scholar

Strand-Amundsen RJ, Tronstad C, Reims HM, Reinholt FP, Høgetveit JO, Tonnessen TI. Machine learning for intraoperative prediction of viability in ischemic small intestine. Physiological Measurement. 2018;39(10):105011. https://doi.org/10.1088/1361-6579/aae0eaStrand-AmundsenRJTronstadCReimsHMReinholtFPHøgetveitJOTonnessenTIMachine learning for intraoperative prediction of viability in ischemic small intestinePhysiological Measurement20183910105011https://doi.org/10.1088/1361-6579/aae0ea10.1088/1361-6579/aae0eaSearch in Google Scholar

A Critical Review of Recurrent Neural Networks for Sequence Learning [Internet]. Cornell University Library. 2015 [cited 29.11.2018]. Available from: arXiv.org > cs > arXiv:1506.00019.CriticalAReview of Recurrent Neural Networks for Sequence Learning [Internet]Cornell University Library2015[cited 29.11.2018]. Available fromarXiv.org> cs > arXiv:1506.00019Search in Google Scholar

Bengio Y. Practical Recommendations for Gradient-Based Training of Deep Architectures2012 15.03.2018. Available from: arXiv:1206.5533 [cs.LG].BengioYPractical Recommendations for Gradient-Based Training of Deep Architectures2012 15.03.2018Available from: arXiv:1206.5533 [cs.LG]Search in Google Scholar

Williams R, Ashton K, Aspinall R, Bellis MA, Bosanquet J, Cramp ME, et al. Implementation of the Lancet Standing Commission on Liver Disease in the UK. Lancet. 2015;386(10008):2098-111. https://doi.org/10.1016/s0140-6736(15)00680-7WilliamsRAshtonKAspinallRBellisMABosanquetJCrampMEet alImplementation of the Lancet Standing Commission on Liver Disease in the UKLancet2015386100082098111https://doi.org/10.1016/s0140-6736(15)00680-710.1016/S0140-6736(15)00680-7Search in Google Scholar

Laing RW, Mergental H, Yap C, Kirkham A, Whilku M, Barton D, et al. Viability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trial. BMJ Open. 2017;7(11):e017733.LaingRWMergentalHYapCKirkhamAWhilkuMBartonDet alViability testing and transplantation of marginal livers (VITTAL) using normothermic machine perfusion: study protocol for an open-label, non-randomised, prospective, single-arm trialBMJ Open2017711e017733Search in Google Scholar

Practical Recommendations for Gradient-Based Training of Deep Architectures [Internet]. Cornell University Library. 2012 [cited 29.11.2018]. Available from: arXiv.org > cs > arXiv:1206.5533v2.Practical Recommendations for Gradient-Based Training of Deep Architectures [Internet]Cornell University Library2012[cited 29.11.2018]. Available fromarXiv.org> cs > arXiv:1206.5533v2Search in Google Scholar

Kalvøy H, Johnsen GK, Martinsen ØG, Grimnes S. New method for separation of electrode polarization impedance from measured tissue impedance. The Open Biomedical Engineering Journal. 2011;5:8-13. https://doi.org/10.2174/1874120701105010008KalvøyHJohnsenGKMartinsenØGGrimnesS.New method for separation of electrode polarization impedance from measured tissue impedanceThe Open Biomedical Engineering Journal20115813https://doi.org/10.2174/187412070110501000810.2174/1874120701105010008310231221625369Search in Google Scholar

Ruiz-Vargas A, Ivorra A, Arkwright JW, editors. Monitoring the Effect of Contact Pressure on Bioimpedance Measurements. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2018: IEEE Engineering in Medicine and Biology Society. https://doi.org/10.1109/embc.2018.8513173Ruiz-VargasAIvorraAArkwrightJWeditors. Monitoring the Effect of Contact Pressure on Bioimpedance Measurements. Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2018: IEEE Engineering in Medicine and Biology Societyhttps://doi.org/10.1109/embc.2018.851317310.1109/EMBC.2018.851317330441453Search in Google Scholar

Ramasamy S, Bennet D, Kim S. Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platform. Int J Nanomedicine. 2014;9:5789-809. https://doi.org/10.2147/ijn.s71128RamasamySBennetDKimS.Drug and bioactive molecule screening based on a bioelectrical impedance cell culture platformInt J Nanomedicine201495789809https://doi.org/10.2147/ijn.s7112810.2147/IJN.S71128426624225525360Search in Google Scholar

Kekonen A, Bergelin M, Eriksson JE, Vaalasti A, Ylanen H, Viik J. Bioimpedance measurement based evaluation of wound healing. Physiological Measurement. 2017;38(7):1373-83. https://doi.org/10.1088/1361-6579/aa63d6KekonenABergelinMErikssonJEVaalastiAYlanenHViikJBioimpedance measurement based evaluation of wound healingPhysiological Measurement2017387137383https://doi.org/10.1088/1361-6579/aa63d610.1088/1361-6579/aa63d628248191Search in Google Scholar

Castro-Giráldez M, Botella P, Toldrá F, Fito P. Low-frequency dielectric spectrum to determine pork meat quality. . Innovative Food Science & Emerging Technologies. 2010;11(2):376-86. https://doi.org/10.1016/j.ifset.2010.01.011Castro-GiráldezMBotellaPToldráFFitoPLow-frequency dielectric spectrum to determine pork meat qualityInnovative Food Science & Emerging Technologies201011237686https://doi.org/10.1016/j.ifset.2010.01.01110.1016/j.ifset.2010.01.011Search in Google Scholar

Kalvøy H, Frich L, Grimnes S, Martinsen ØG, Hol PK, Stubhaug A. Impedance-based tissue discrimination for needle guidance. Physiological measurement. 2009;30(2):129-40. https://doi.org/10.1088/0967-3334/30/2/002KalvøyHFrichLGrimnesSMartinsenØGHolPKStubhaugAImpedance-based tissue discrimination for needle guidancePhysiological measurement200930212940https://doi.org/10.1088/0967-3334/30/2/00210.1088/0967-3334/30/2/00219136732Search in Google Scholar

Wang HB, Yen CW, Liang JT, Wang Q, Liu GZ, Song R. A robust electrode configuration for bioimpedance measurement of respiration. J Healthc Eng. 2014;5(3):313-27.WangHBYenCWLiangJTWangQLiuGZSongRA robust electrode configuration for bioimpedance measurement of respirationJ Healthc Eng2014533132710.1260/2040-2295.5.3.31325193370Search in Google Scholar

Kusche R, Klimach P, Ryschka M. A Multichannel Real-Time Bioimpedance Measurement Device for Pulse Wave Analysis. IEEE Trans Biomed Circuits Syst. 2018;12(3):614-22. https://doi.org/10.1109/tbcas.2018.2812222KuscheRKlimachPRyschkaMA Multichannel Real-Time Bioimpedance Measurement Device for Pulse Wave AnalysisIEEE Trans Biomed Circuits Syst201812361422https://doi.org/10.1109/tbcas.2018.281222210.1109/TBCAS.2018.281222229877824Search in Google Scholar