[
Ahmad, B., Najar, M.B., Ahmad, S. (2024). Analysis of LST, NDVI, and UHI patterns for urban climate using Landsat-9 satellite data in Delhi. J Atmos Sol-Terr Phys 265: 106359. https://doi.org/10.1016/j.jastp.2024.106359
]Search in Google Scholar
[
Artis, D.A., Carnahan, W.H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12(4): 313–329.
]Search in Google Scholar
[
Berger, C., Rosentreter, J., Voltersen, M., Baumgart, C., Schmullius, C., Hese, S. (2017). Spatio-Temporal Analysis of the Relationship Between 2D/3D Urban Site Characteristics and Land Surface Temperature. Remote Sens Environ 193: 225–243.
]Search in Google Scholar
[
Bounouh, O., Tarquis, A. M., and Riadh Farah, I. (2022). Investigation of climate change impact on olive trees in Tunisia via MODIS LST and NDVI products and correlation measures, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-13255, https://doi.org/10.5194/egusphere-egu22-13255, 2022.
]Search in Google Scholar
[
Carlson, T.N., Ripley, D.A. (1997). On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens Environ 62: 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1
]Search in Google Scholar
[
Chen, X.L., Zhao, H.M., Li, P.X., Yi, Z.Y. (2006). Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sens Environ 104(2): 133–146. https://doi.org/10.1016/j.rse.2005.11.016
]Search in Google Scholar
[
Du, S., Xiong, Z., Wang, Y., Guo, L. (2016). Quantifying the Multilevel Effects of Landscape Composition and configuration on Land Surface Temperature. Remote Sens Environ 178: 84–92.
]Search in Google Scholar
[
Estoque, R.C., Murayama, Y., Myint, S.W. (2017). Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci Total Environ 577: 349–359
]Search in Google Scholar
[
Foley, J.A., DeFries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K. et al. (2005). Global Consequences of Land Use. Science 309: 570–574.
]Search in Google Scholar
[
Fu, P., Weng, Q. (2016). A Time Series Analysis of Urbanization Induced Land Use and Land Cover Change and Its Impact on Land Surface Temperature With Landsat Imagery. Remote Sens Environ 2016, 175: 205–214.
]Search in Google Scholar
[
Ghobadi, Y., Pradhan, B., Shafri, H.Z.M., Kabiri, K. (2014). Assessment of spatial relationship between land surface temperature and land use/cover retrieval from multi-temporal remote sensing data in South Karkheh Sub-basin, Iran. Arab J Geosci 8(1): 525–537. https://doi:10.1007/s12517-013-1244-3.
]Search in Google Scholar
[
Gorgani, S.A., Panahi, M., Rezaie, F. (2013). The relationship between NDVI and LST in the Urban area of Mashhad, Iran. International Conference on Civil Engineering Architecture and Urban Sustainable Development. November, Tabriz, Iran.
]Search in Google Scholar
[
Govil, H., Guha, S., Diwan, P., Gill, N., Dey, A. (2020). Analyzing Linear Relationships of LST with NDVI and MNDISI Using Various Resolution Levels of Landsat 8 OLI/TIRS Data. In: Sharma N., Chakrabarti A., Balas V. (eds) Data Management, Analytics and Innovation (pp. 171-184). Advances in Intelligent Systems and Computing, vol 1042. Springer, Singapore. https://doi.org/10.1007/978-981-32-9949-8_13
]Search in Google Scholar
[
Grimm, N.B., Faeth, S.H., Golubiewski, N.E., Redman, C.L., Wu, J., Bai, X., Briggs, J.M., Grimm, N. (2008). Global Change and the Ecology of Cities. Science 319: 756–760.
]Search in Google Scholar
[
Guha, S., Govil, H. (2020). An assessment on the relationship between land surface temperature and normalized difference vegetation index. Environ Dev Sustain https://doi.org/10.1007/s10668-020-00657-6
]Search in Google Scholar
[
Guha, S., Govil, H., Diwan, P. (2019). Analytical study of seasonal variability in land surface temperature with normalized difference vegetation index, normalized difference water index, normalized difference built-up index, and normalized multiband drought index. J Appl Remote Sens 13(2): 024518. https://doi.org/1010.1117/1.JRS.13.024518
]Search in Google Scholar
[
Guha, S., Govil, H., Gill, N., Dey, A. (2020). Analysing the Capability of NCI Technique in Change Detection Using High-and Medium-Resolution Multispectral Data. Geoecology of Landscape Dynamics, Springer, Singapore, 133-147. https://doi.org/10.1007/978-981-15-2097-6_10
]Search in Google Scholar
[
Hao, X., Li, W., Deng, H. (2016). The oasis effect and summer temperature rise in arid regions-case study in Tarim Basin. Sci Rep 6: 35418. https://doi.org/10.1038/srep35418
]Search in Google Scholar
[
He, B.J., Zhao, Z.Q., Shen, L.D., Wang, H.B., Li, L.G., He, B.J. (2019). An Approach to Examining Performances of cool/hot Sources in mitigating/Enhancing Land Surface Temperature under Different Temperature Backgrounds Based on Landsat 8 Image. Sustain Cities Soc 44: 416–427.
]Search in Google Scholar
[
Hou, G.L., Zhang, H.Y., Wang, Y.Q., Qiao, Z.H., Zhang, Z.X. (2010). Retrieval and Spatial Distribution of Land Surface Temperature in the Middle Part of Jilin Province Based on MODIS Data. Sci Geogr Sin 30: 421–427, https://www.earthexplorer.usgs.gov
]Search in Google Scholar
[
Kalnay, E., Cai, M. (2003). Impact of Urbanization and Land-Use Change on Climate. Nat Cell Boil 423: 528–531.
]Search in Google Scholar
[
Liang, B.P., Li, Y., Chen, K.Z. (2012). A Research on Land Features and Correlation between NDVI and Land Surface Temperature in Guilin City. Remote Sens Tech Appl 27: 429–435.
]Search in Google Scholar
[
Liu, H., Zhan, Q., Yang, C., Wang, J. (2018). Characterizing the Spatio-Temporal Pattern of Land Surface Temperature through Time Series Clustering: Based on the Latent Pattern and Morphology. Remote Sens 10: 654.
]Search in Google Scholar
[
Nigatu, W., Dick, Ø.B., Tveite, H. (2014). GIS Based Mapping of Land Cover Changes Utilizing Multi-Temporal Remotely Sensed Image Data in Lake Hawassa Watershed, Ethiopia. Environ Monit Assess 186(3): 1765–1780. https://doi.org/10.1007/s10661-013-3491-x.
]Search in Google Scholar
[
Patz, J.A., Campbell-Lendrum, D., Holloway, T., Foley, J.A. (2005). Impact of Regional Climate Change on Human Health. Nat Cell Boil 438: 310–317.
]Search in Google Scholar
[
Peng, J., Ma, J., Liu, Q., Liu, Y., Hu, Y., Li, Y., Yue, Y. (2018a). Spatial-Temporal Change of Land Surface Temperature across 285 Cities in China: An Urban-Rural Contrast Perspective. Sci Total Environ 635: 487–497
]Search in Google Scholar
[
Peng, J., Jia, J., Liu, Y., Li, H., Wu, J. (2018b). Seasonal Contrast of the Dominant Factors for Spatial Distribution of Land Surface Temperature in Urban Areas. Remote Sens Environ 215: 255–267.
]Search in Google Scholar
[
Peng, J., Xie, P., Liu, Y., Ma, J. (2016). Urban Thermal Environment Dynamics and Associated Landscape Pattern Factors: A Case Study in the Beijing Metropolitan Region. Remote Sens Environ 173: 145–155.
]Search in Google Scholar
[
Qin, Z.H., Karnieli, A., Barliner, P. (2001). A Mono-Window Algorithm for Retrieving Land Surface Temperature from Landsat TM Data and Its Application to the Israel-Egypt Border Region. Int J Remote Sens 22(18): 3719-3746. https://doi:10.1080/01431160010006971
]Search in Google Scholar
[
Sandholt, I., Rasmussen, K., Andersen, J. (2002). A simple interpretation of the Surface Temperature/Vegetation Index Space for Assessment of Surface Moisture Status. Remote Sens Environ 79: 213-224. https://doi.org/10.1016/s0034-4257(01)00274-7
]Search in Google Scholar
[
Sobrino, J.A., Raissouni, N., Li, Z. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens Environ 75(2): 256–266. https://doi.org/10.1016/S0034-4257(00)00171-1
]Search in Google Scholar
[
Sobrino, J.A., Jimenez-Munoz, J.C., Paolini, L. (2004). Land surface temperature retrieval from Landsat TM5. Remote Sens Environ 9: 434–440. https://doi:10.1016/j.rse.2004.02.003
]Search in Google Scholar
[
Sun, D., Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys Res Lett 34, L24406. https://doi:10.1029/2007GL031485
]Search in Google Scholar
[
Tran, D.X., Pla, F., Latorre-Carmona, P., Myint, S.W., Caetano, M., Kieu, H.V. (2017). Characterizing the Relationship Between Land Use Land Cover Change and Land Surface Temperature. ISPRS J Photogramm Sens 124: 119–132.
]Search in Google Scholar
[
Tucker, C.J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2): 127–150.
]Search in Google Scholar
[
Ullah, W., Ahmad, K., Ullah, S., Tahir, A.A., Javed, M.F., Nazir, A., Abbasi, A.M., Aziz, M., Mohamed, A. (2023). Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon 9(2): e13322. https://doi.org/10.1016/j.heliyon.2023.e13322.
]Search in Google Scholar
[
Weng, Q. (2009). Thermal Infrared Remote Sensing for Urban Climate and Environmental Studies: Methods, Applications, and Trends. ISPRS J Photogramm Sens 64: 335–344.
]Search in Google Scholar
[
Weng, Q.H., Lu, D.S., Schubring, J. (2004). Estimation of Land Surface Temperature– Vegetation Abundance Relationship for Urban Heat Island Studies. Remote Sens Environ 89: 467-483. https://doi:10.1016/j.rse.2003.11.005
]Search in Google Scholar
[
Yuan, X., Wang, W., Cui, J., Meng, F., Kurban, A., De Maeyer, P. (2017). Vegetation changes and land surface feedbacks drive shifts in local temperatures over Central Asia. Sci Rep 7(1): 3287. https://doi.org/10.1038/s41598017034322
]Search in Google Scholar
[
Yue, W., Xu, J., Tan, W., Xu, L. (2007). The Relationship between Land Surface Temperature and NDVI with Remote Sensing. Application to Shanghai Landsat 7 ETM+ data. Int J Remote Sens 28: 3205–3226. https://doi.org/10.1080/01431160500306906
]Search in Google Scholar
[
Zhou, P., Han, J., Cheng, G., Zhang, B. (2019). Learning Compact and Discriminative Stacked Autoencoder for Hyperspectral Image Classification. IEEE Transa Geosci Remote Sens 57(7): 4823-4833.
]Search in Google Scholar