Acceso abierto

Mapping and yield prediction of castor bean (Ricinus communis) using Sentinel-2A satellite image in a semi-arid region of india


Cite

Agri Farming, (2023). Castor cultivation information guide. Retrieved June 4, 2023, from https://www.agrifarming.in/castor-cultivation-information-guide. Search in Google Scholar

Atkinson, P.M., Tatnall, A.R.L. (1997). Introduction neural networks in remote sensing. Int. J. Remote Sens. 18(4):699-709. https://doi.org/10.1080/014311697218700 Search in Google Scholar

Bégué, A., Arvor, D., Bellon, B., Betbeder, J., Abelleyra, D., Ferraz, R. P. D., Lebourgeois, V., et al., (2018). Remote Sensing and Cropping Practices: A Review. Remote Sens., 10, 99. https://doi.org/10.3390/rs10010099 Search in Google Scholar

Belward, A.S., Skøien, J.O., (2015). Who launched what, when and why; trends in global land-cover observation capacity from civilian Earth observation satellites. ISPRS J. Photogramm. Remote Sens., 103, 115-128. https://doi.org/10.1016/j.isprsjprs.2014.03.009 Search in Google Scholar

Bolton, D.K., Friedl, M.A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 173, 74-84. https://doi.org/10.1016/j.agrformet.2013.01.007 Search in Google Scholar

Cavalaris, C., Latterini, F., Stefanoni W., Karamoutis, C., Luigi Pari, L., Alexopoulou, E., (2022) Monitoring Chemical-Induced Ripening of Castor (Ricinus communis L.) by UAS-Based Remote Sensing. Agriculture, 12, 159. https://doi.org/10.3390/agriculture12020159 Search in Google Scholar

Chu, C., Hsu, A.L., Chou, K.H., Bandettini, P., Lin, C., ADNI Initiative (2012). Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images. NeuroImage, 60(1):59-70. https://doi.org/10.1016/j.neuroimage.2011.11.066 Search in Google Scholar

Cortes, C., Vapnik, V.N. (1995). Support-vector networks. Mach. Learn. 20:273-297. https://doi.org/10.1007/BF00994018 Search in Google Scholar

Esquerdo, J., Zullo, J., Antunes, J.F.G. (2011). Use of NDVI/AVHRR time-series profiles for soybean crop monitoring in Brazil. Int. J. Remote Sens. 32: 3711-3727. https://doi.org/10.1080/01431161003764112 Search in Google Scholar

Ghazaryan, G., Dubovyk, O., Löw, F., Lavreniuk, M., Kolotii, A., Schellberg, J., Kussul, N., (2018). A rule-based approach for crop identification using multi-temporal and multi-sensor phenological metrics. Eur. J. Remote Sens., 51:1, 511-524. https://doi.org/10.1080/22797254.2018.1455540. Search in Google Scholar

Huang. J., Wang, X., Li, X., Tian, H., Pan, Z. (2013). Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS ONE 8(8): e70816. https://doi.org/10.1371/journal.pone.0070816. Search in Google Scholar

Huete, A. R., Didan, K., Miura, T., Rodriguez, E., Gao, X., Ferreira, L. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195-213. https://doi.org/10.1016/S0034-4257(02)00096-2 Search in Google Scholar

Huete, A., Justice, C., Van Leeuwen, W. (1999). MODIS vegetation index (MOD13), Algorithm theoretical basis document, 3, 213. Search in Google Scholar

Jaafar, H. H., Ahmed, F. A. (2015). Crop yield prediction from remotely sensed vegetation indices and primary productivity in arid and semi-arid lands. Int. J. Remote Sens., 36(18), 4570-4589. https://doi.org/10.1080/01431161.2015.1084434. Search in Google Scholar

Jiang, Z., Huete, A.R, Didan, K., Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sens. Environ. 112(10), 3833-3845. https://doi.org/10.1016/j.rse.2008.06.006. Search in Google Scholar

Kumar, P, Gupta, D. K., Mishra, V.N., Prasad, R. (2015). Comparison of support vector machine, artificial neural network and spectral angle mapper algorithms for crop classification using LISS IV data. Int. J. Remote Sens. 36(6):1604-1617. https://doi.org/10.1080/2150704X.2015.1019015. Search in Google Scholar

Kumar, P., Prasad, R., Choudhary, A., Mishra, V. N., Gupta, D.K. and Srivastava, P.K. (2017). A statistical significance of differences in classification accuracy of crop types using different classification algorithms. Geocarto Int., 32(2), 206-224. https://doi.org/10.1080/10106049.2015.1132483. Search in Google Scholar

Lillesand, T.M., Kiefer, R.W., Chipman, J.W. (2008). Remote sensing and image interpretation, 6th Edn. Wiley, New York. Search in Google Scholar

Liu, J., Shang, J., Qian, B., Huffman, T., Zhang, Y., Dong, T. Jing, Q., Martin, T. (2019). Crop Yield Estimation Using Time-Series MODIS Data and the Effects of Cropland Masks in Ontario, Canada. Remote Sens. 11(20), 2419. https://doi.org/10.3390/rs11202419. Search in Google Scholar

Lu, D., Mausel, P., Batistella, M., Moran, E. (2004). Comparison of landcover classification methods in the Brazilian Amazon basin. Photogramm Eng Remote Sens 70(6):723-731. https://doi.org/10.14358/PERS.70.6.723. Search in Google Scholar

Lu, D., Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens., 28(5):823-870. https://doi.org/10.1080/01431160600746456. Search in Google Scholar

Martins, V. S., Barbosa, C. C. F., De Carvalho, L. A. S., Jorge, D. S. F., Lobo, F. D. L., and Novo, E. M. L. de Mores. (2017). Assessment of atmospheric correction methods for Sentinel-2A MSI images applied to Amazon floodplain lakes. Remote Sens., 9 (4), 322. https://doi.org/10.3390/rs9040322. Search in Google Scholar

Mas J.F., Flores, J.J. (2008). The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 29:617-663. https://doi.org/10.1080/01431160701352154. Search in Google Scholar

Mishra, V.N., Prasad, R., Kumar, P., Gupta, D.K., Srivastava, P.K (2017b). Dual polarimetric C-band SAR data for land use/land cover classification by incorporating textural information. Environ. Earth Sci. 76(1):26. https://doi.org/10.1007/s12665-016-6341-7. Search in Google Scholar

Mishra, V.N., Prasad, R., Kumar, P., Srivastava, P.K., Rai, P. K., (2017a). Knowledge-based decision tree approach for mapping spatial distribution of rice crop using C-band synthetic aperture radar-derived information. J. Appl. Remote Sens. 11(4), 046003. https://doi.org/10.1117/1.JRS.11.046003. Search in Google Scholar

Mkhabela, M.S., Bullock, P., Raj, S., Wang, S., Yang, Y. (2011). Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 151, 385-393. https://doi.org/10.1016/j.agrformet.2010.11.012. Search in Google Scholar

Pal, M., Foody, G. M. (2010). Feature selection for classification of hyperspectral data by SVM. IEEE Trans. Geosci. Remote Sens. 48, 2297-2307. https://doi.org/10.1109/TGRS.2009.2039484. Search in Google Scholar

Pareulo, J. M., Jobbagy, E. G., Sala, O. E., Lauenroth, W. K. and Burke, I. C. (1998). Functional and Structural convergence of temperate grassland and shrubland ecosystems. Ecol Appl, 8 (1), 194-206. https://doi.org/10.1890/1051-0761(1998)008[0194:FASCOT]2.0.CO;2. Search in Google Scholar

Pijanowski, B.C., Brown, D.G., Shellito, B.A., Manik, G.A. (2002). Using neural networks and GIS to forecast land use changes: a land transformation model. Comput Environ Urban Syst 26:553-575. https://doi.org/10.1016/S0198-9715(01)00015-1. Search in Google Scholar

Polsot, A.-S., Speedy, A., Kueneman, E., (2004). Good Agricultural Practices-A Working Concept; Background Paper for the FAO Internal Workshop on Good Agricultural Practices; FAO: Rome, Italy, p. 41. Search in Google Scholar

Puissant, A., Rougiera, S., Andre´, S. (2014). Object-oriented mapping of urban trees using random forest classifiers. Int J Appl Earth Obs Geoinf 26:235–245. http://dx.doi.org/10.1016/j.jag.2013.07.002. Search in Google Scholar

Richards, J.A, Jia, X. (2006). Remote sensing digital image analysis, 4th edn. Springer, Heidelberg. Search in Google Scholar

Richards, J.A. (1993). Remote Sensing Digital Image Analysis, Springer. Search in Google Scholar

Roujean, J. L., Breon, F.M. (1995). Estimating par absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ., 51, 375-384. https://doi.org/10.1016/0034-4257(94)00114-3. Search in Google Scholar

Shammi, S. A., Meng, Q. (2021). Use time series NDVI and EVI to develop dynamic crop growth metrics for yield modeling. Ecol Indic, 121, 107124, https://doi.org/10.1016/j.ecolind.2020.107124. Search in Google Scholar

Shiu, Y.-S., Chuang, Y.-C. (2019). Yield Estimation of paddy rice based on satellite imagery: comparison of global and local regression models. Remote Sens. 11, 111. https://doi.org/10.3390/rs11020111. Search in Google Scholar

Skakun, S., Franch, B., Vermote, E., Roger, J-C., Becker-Reshef, I., Justice, C., Kussul, N., (2017). Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture model. Remote Sens. Environ., 195, 244-258. https://doi.org/10.1016/j.rse.2017.04.026. Search in Google Scholar

Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., Islam, T. (2012). Selection of classification techniques for land use/land cover change investigation. Adv. Space Res. 50:1250-1265. https://doi.org/10.1016/j.asr.2012.06.032. Search in Google Scholar

Sun, H., Xu, A., Lin, H., Zhang, L., Mei, Y. (2012). Winter wheat mapping using temporal signatures of MODIS vegetation index data. Int. J. Remote Sens., 33(16), 5026-5042. https://doi.org/10.1080/01431161.2012.657366. Search in Google Scholar

Vapnik, V.N. (1998). Statistical learning theory. Wiley, New York. Search in Google Scholar

Weier, J. and Herring, D. (2000). Measuring Vegetation (NDVI & EVI). NASA Earth Observatory, Washington DC. Search in Google Scholar

eISSN:
1805-4196
Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Geosciences, other, Life Sciences, Ecology