Cite

Alexei, L., John, M., Yujie, W., Istvan, L., Sergey, K., (2011a). Multiangle implementation of atmospheric correction (MAIAC):1. Radiative transfer basis and look-up tables. J. Geophys. Res. 116. https://doi.org/10.1029/2010JD014985 Search in Google Scholar

Alexei, L., Kahn, R., Yujie, W., Istvan, L., Sergey, K., L., R., R., L., S., R.J., (2011b). Multiangle implementation of atmospheric correction (MAIAC):2. Aerosol algorithm. J. Geophys. Res. 116. https://doi.org/10.1029/2010JD014986 Search in Google Scholar

Altaratz, O., Bar-Or, R.Z., Wollner, U., Koren, I., (2013). Relative humidity and its effect on aerosol optical depth in the vicinity of convective clouds. Environ. Res. Lett. 8. https://doi.org/10.1088/1748-9326/8/3/034025 Search in Google Scholar

Banerjee, T., Kumar, M., Mall, R.K., Singh, R.S., (2017). Airing ‘clean air’ in Clean India Mission. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-016-8264-y28039622 Search in Google Scholar

Banerjee, T., Kumar, M., Singh, N., (2018). Aerosol, climate, and sustainability, Encyclopedia of the Anthropocene. Elsevier Inc. https://doi.org/10.1016/B978-0-12-809665-9.09914-6 Search in Google Scholar

Banerjee, T., Murari, V., Kumar, M., Raju, M.P., (2015). Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos. Res. 164–165, 167–187. https://doi.org/10.1016/j.atmosres.2015.04.017 Search in Google Scholar

Bilal, M., Nichol, J.E., (2015). Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events. Geophys. Res. Atmos. 120, 7941–7957. https://doi.org/10.1002/2015JD023082 Search in Google Scholar

Bilal, M., Qiu, Z., Campbell, J.R., Spak, S.N., Shen, X., Nazeer, M., (2018). A new MODIS C6 dark target and Deep Blue merged aerosol product on a 3 km spatial grid. Remote Sens. 10, 1–13. https://doi.org/10.3390/rs10030463 Search in Google Scholar

Burney, J., Ramanathan, V., (2014). Recent climate and air pollution impacts on indian agriculture. Proc. Natl. Acad. Sci. U. S. A. 111, 16319–16324. https://doi.org/10.1073/pnas.1317275111424626925368149 Search in Google Scholar

Campbell, B.M., Beare, D.J., Bennett, E.M., Hall-Spencer, J.M., Ingram, J.S.I., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J.A., Shindell, D., (2017). Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecol. Soc. 22. https://doi.org/10.5751/ES-09595-220408 Search in Google Scholar

Census of India, (2011). Cities having population 1 lakh and above. Search in Google Scholar

Cesnulyte, V., Lindfors, A. V., Pitkänen, M.R.A., Lehtinen, K.E.J., Morcrette, J.J., Arola, A., (2014). Comparing ECMWF AOD with AERONET observations at visible and UV wavelengths. Atmos. Chem. Phys. 14, 593–608. https://doi.org/10.5194/acp-14-593-2014 Search in Google Scholar

Chen, X., Ding, J., Liu, J., Wang, J., Ge, X., Wang, R., Zuo, H., (2021). Validation and comparison of high-resolution MAIAC aerosol products over Central Asia. Atmos. Environ. 251, 118273. https://doi.org/10.1016/J.ATMOSENV.2021.118273 Search in Google Scholar

Choudhry, P., Misra, A., Tripathi, S.N., (2012). Study of MODIS derived AOD at three different locations in the Indo Gangetic Plain: Kanpur, Gandhi College and Nainital. Ann. Geophys. 30, 1479–1493. https://doi.org/10.5194/angeo-30-1479-2012 Search in Google Scholar

Chowdhury, S., Dey, S., Guttikunda, S., Pillarisetti, A., Smith, K.R., Girolamo, L. Di, (2019). Indian annual ambient air quality standard is achievable by completely mitigating emissions from household sources. Proc. Natl. Acad. Sci. U. S. A. 166, 10711–10716. https://doi.org/10.1073/pnas.1900888116656116330988190 Search in Google Scholar

Dahiya, S., Myllyvirta, L., Sivalingam, N., (2017). Airpocalyse- Assessment of Air Pollution in Indian Cities. Greenpeace, India. Retrieved January 8, 2017, from https://doi.org/10.1080/19485565.1983.99885436680803 Search in Google Scholar

David, L.M., Ravishankara, A.R., Kodros, J.K., Venkataraman, C., Sadavarte, P., Pierce, J.R., Chaliyakunnel, S., Millet, D.B., (2018). Aerosol Optical Depth Over India. J. Geophys. Res. Atmos. 123, 3688–3703. https://doi.org/10.1002/2017JD027719789438533614367 Search in Google Scholar

Dey, S., Di Girolamo, L., (2010). A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000-2008) of Multiangle Imaging Spectroradiometer (MISR) data. J. Geophys. Res. Atmos. 115, 1–22. https://doi.org/10.1029/2009JD013395 Search in Google Scholar

Dey, S., Purohit, B., Balyan, P., Dixit, K., Bali, K., Kumar, A., Imam, F., Chowdhury, S., Ganguly, D., Gargava, P., Shukla, V. K., (2020). A Satellite-Based High-Resolution (1-km) Ambient PM2.5 Database for India over Two Decades (2000–2019): Applications for Air Quality Management. Remote Sens. 12, 3872. https://doi.org/10.3390/rs12233872 Search in Google Scholar

Evans, J., van Donkelaar, A., Martin, R. V., Burnett, R., Rainham, D.G., Birkett, N.J., Krewski, D., (2013). Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environ. Res. 120, 33–42. https://doi.org/10.1016/j.envres.2012.08.00522959329 Search in Google Scholar

Falah, S., Mhawish, A., Sorek-Hamer, M., Lyapustin, A.I., Kloog, I., Banerjee, T., Kizel, F., Broday, D.M., (2021). Impact of environmental attributes on the uncertainty in MAIAC/MODIS AOD retrievals: A comparative analysis. Atmos. Environ. 262, 118659. https://doi.org/10.1016/J.ATMOSENV.2021.118659 Search in Google Scholar

Ghosh, S., N., K.V., Kumar, S., Midya, K., (2021). Seasonal Contrast of Land Surface Temperature in Faridabad: An Urbanized District of Haryana, India, In: IGI, G. (Ed.), Methods and Applications of Geospatial Technology in Sustainable Urbanism (pp. 217–250). IGI Global. https://doi.org/10.4018/978-1-7998-2249-3.ch008 Search in Google Scholar

Gogikar, P., Tyagi, B., (2016). Assessment of particulate matter variation during 2011–2015 over a tropical station Agra, India. Atmos. Environ. 147, 11–21. https://doi.org/10.1016/j.atmosenv.2016.09.063 Search in Google Scholar

Gupta, P., Remer, L.A., Levy, R.C., Mattoo, S., (2018). Validation of MODIS 3km land aerosol optical depth from NASA’s EOS Terra and Aqua missions. Atmos. Meas. Tech. 11, 3145–3159. https://doi.org/10.5194/amt-11-3145-2018 Search in Google Scholar

Habib, A., Chen, B., Khalid, B., Tan, S., Che, H., Mahmood, T., Shi, G., Butt, M.T., (2019). Estimation and inter-comparison of dust aerosols based on MODIS, MISR and AERONET retrievals over Asian desert regions. J. Environ. Sci. (China) 76, 154–166. https://doi.org/10.1016/j.jes.2018.04.01930528007 Search in Google Scholar

Han, S., Bian, H., Zhang, Y., Wu, J., Wang, Y., Tie, X., Li, Y., Li, X., Yao, Q., (2012). Effect of aerosols on visibility and radiation in spring 2009 in Tianjin, China. Aerosol Air Qual. Res. 12, 211–217. https://doi.org/10.4209/aaqr.2011.05.0073 Search in Google Scholar

Hansen, J., R., R., (1997). Radiative forcing and climate rrsponse. J. Geophys. Res. 102, 6831–6864.10.1029/96JD03436 Search in Google Scholar

Hoff, R.M., Christopher, S.A., (2009). Remote sensing of particulate pollution from space: Have we reached the promised land? J. Air Waste Manag. Assoc. 59, 645–675. https://doi.org/10.3155/1047-3289.59.6.645 Search in Google Scholar

Hsu, N.C., Jeong, M.J., Bettenhausen, C., Sayer, A.M., Hansell, R., Seftor, C.S., Huang, J., Tsay, S.C., (2013). Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 118, 9296–9315. https://doi.org/10.1002/jgrd.50712 Search in Google Scholar

Hsu, N.C., Tsay, S.C., King, M.D., Herman, J.R., (2004). Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 42, 557–569. https://doi.org/10.1109/TGRS.2004.824067 Search in Google Scholar

IQAir AirVisual (2018). World Air Quality Report, 2018. Search in Google Scholar

Jiang, X., Liu, Y., Yu, B., Jiang, M., (2007). Comparison of MISR aerosol optical thickness with AERONET measurements in Beijing metropolitan area. Remote Sens. Environ. 107, 45–53. https://doi.org/10.1016/j.rse.2006.06.022 Search in Google Scholar

Jin, Q., Wang, C., (2018). The greening of Northwest Indian subcontinent and reduction of dust abundance resulting from Indian summer monsoon revival. Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-23055-5585470429545562 Search in Google Scholar

Kahn, R.A., Gaitley, B.J., (2015). Atmospheres An analysis of global aerosol type as retrieved by MISR. Journal of Geophysical Research. Retrieved April 12, 2015, from https://doi.org/10.1002/2015JD023322. Search in Google Scholar

Kaufman, Y.J., Tanré, D., Boucher, O., (2002). A satellite view of aerosols in the climate system. Nature 419, 215–223. https://doi.org/10.1038/nature0109112226676 Search in Google Scholar

Kharol, S., Kaskaoutis, D., Sharma, A. R., Singh, R. P., (2013). Long-Term (1951–2007) Rainfall Trends around Six Indian Cities: Current State, Meteorological, and Urban Dynamics. Adv. Meteorol. 2013. 1-15. https://doi.org/10.1155/2013/572954 Search in Google Scholar

Kumar, M., Raju, M.P., Singh, R.S., Banerjee, T., (2017). Impact of drought and normal monsoon scenarios on aerosol induced radiative forcing and atmospheric heating in Varanasi over middle Indo-Gangetic Plain. J. Aerosol Sci. 113, 95–107. https://doi.org/10.1016/j.jaerosci.2017.07.016 Search in Google Scholar

Kumar, M., Singh, R.S., Banerjee, T., (2015). Associating airborne particulates and human health: Exploring possibilities: Comment on: Kim, Ki-Hyun, Kabir, E. and Kabir, S. 2015. A review on the human health impact of airborne particulate matter. Environment International 74 (2015) 136-143. Environ. Int. https://doi.org/10.1016/j.envint.2015.06.00226093957 Search in Google Scholar

Kumar, R., Nivit, Y.K., (2018). MAKEOVER: Conversion of brick kilns in Delhi-NCR to a cleaner technology—A status report, Centre for Science and Environment. New Delhi. Search in Google Scholar

Kumar, S., Ghosh, S., Singh, S., (2022). Polycentric urban growth and identification of urban hot spots in Faridabad, the million-plus metropolitan city of Haryana, India: a zonal assessment using spatial metrics and GIS. Environ. Dev. Sustain. 24, 8246–8286. https://doi.org/10.1007/s10668-021-01782-6 Search in Google Scholar

Kumar, S., Midya, K., Ghosh, S., Singh, S., (2021). Pixel-Based vs. Object-Based Anthropogenic Impervious Surface Detection: Driver for Urban-Rural Thermal Disparity in Faridabad, Haryana, India. Geocarto Int. 0, 1–23. https://doi.org/10.1080/10106049.2021.2002429 Search in Google Scholar

Kumar, T.K., Rao, S.V.B., (2012). Seasonal variations of aerosol optical depth over indian subcontinent. IJCRR 04, 87–95. Search in Google Scholar

Kuttippurath, J., Singh, A., Dash, S.P., Mallick, N., Clerbaux, C., Van Damme, M., Clarisse, L., Coheur, P.F., Raj, S., Abbhishek, K., Varikoden, H., (2020). Record high levels of atmospheric ammonia over India: Spatial and temporal analyses. Sci. Total Environ. 740, 139986. https://doi.org/10.1016/j.scitotenv.2020.13998632927535 Search in Google Scholar

Lau, K.M., Kim, K.M., (2006). Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett. 33, 1–5. https://doi.org/10.1029/2006GL027546 Search in Google Scholar

Levy, R.C., Mattoo, S., Munchak, L.A., Remer, L.A., Sayer, A.M., Patadia, F., Hsu, N.C., (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 6, 2989–3034. https://doi.org/10.5194/amt-6-2989-2013 Search in Google Scholar

Levy, R.C., Remer, L.A., Kleidman, R.G., Mattoo, S., Ichoku, C., Kahn, R., Eck, T.F., (2010). Global evaluation of the Collection 5 MODIS dark-target aerosol products over land. Atmos. Chem. Phys. 10, 10399–10420. https://doi.org/10.5194/acp-10-10399-2010 Search in Google Scholar

Li, R., Ma, T., Xu, Q., Song, X., (2018). Using MAIAC AOD to verify the PM2.5 spatial patterns of a land use regression model. Environ. Pollut. 243, 501–509. https://doi.org/10.1016/J.ENVPOL.2018.09.026 Search in Google Scholar

Lyapustin, A., Korkin, S., Wang, Y., Quayle, B., Laszlo, I., (2012). Erratum: Discrimination of biomass burning smoke and clouds in MAIAC algorithm published (Atmospheric Chemistry and Physics (2012) 12 (9679-9686)). Atmos. Chem. Phys. 12, 10631. https://doi.org/10.5194/acp-12-10631-2012 Search in Google Scholar

Lyapustin, A., Wang, Y., Korkin, S., Huang, D., (2018). MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 11, 5741–5765. https://doi.org/10.5194/amt-11-5741-2018 Search in Google Scholar

Mangla, R., J, I., Chakra, S.S., (2020). Inter-comparison of multi-satellites and Aeronet AOD over Indian Region. Atmos. Res. 240, 104950. https://doi.org/10.1016/j.atmosres.2020.104950 Search in Google Scholar

Martin, R. V., (2008). Satellite remote sensing of surface air quality. Atmos. Environ. 42, 7823–7843. https://doi.org/10.1016/j.atmosenv.2008.07.018 Search in Google Scholar

Mhawish, A., Banerjee, T., Broday, D.M., Misra, A., Tripathi, S.N., (2017). Evaluation of MODIS Collection 6 aerosol retrieval algorithms over Indo-Gangetic Plain: Implications of aerosols types and mass loading. Remote Sens. Environ. 201, 297–313. https://doi.org/10.1016/j.rse.2017.09.016 Search in Google Scholar

Mhawish, A., Banerjee, T., Sorek-Hamer, M., Lyapustin, A., Broday, D.M., Chatfield, R., (2019). Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 224, 12–28. https://doi.org/10.1016/j.rse.2019.01.033 Search in Google Scholar

Mhawish, A., Kumar, M., Mishra, A.K., Srivastava, P.K., Banerjee, T., (2018). Remote Sensing of Aerosols From Space: Retrieval of Properties and Applications, In: Remote Sensing of Aerosols, Clouds, and Precipitation (pp. 45–83). Elsevier Inc. https://doi.org/10.1016/B978-0-12-810437-8.00003-7 Search in Google Scholar

Mhawish, A., Sorek-Hamer, M., Chatfield, R., Banerjee, T., Bilal, M., Kumar, M., Sarangi, C., Franklin, M., Chau, K., Garay, M., Kalashnikova, O., (2021). Aerosol characteristics from earth observation systems: A comprehensive investigation over South Asia (2000–2019). Remote Sens. Environ. 259, 112410. https://doi.org/10.1016/J.RSE.2021.112410 Search in Google Scholar

National Capital Region Planning Board, (2015). Economic profile of NCR 2015 final report. Search in Google Scholar

Pal, R., Chowdhury, S., Dey, S., Sharma, A.R., (2018). 18-year ambient PM2.5 exposure and night light trends in Indian cities: Vulnerability assessment. Aerosol Air Qual. Res. 18, 2332–2342. https://doi.org/10.4209/aaqr.2017.10.0425 Search in Google Scholar

Qin, W., Fang, H., Wang, L., Wei, J., Zhang, M., Su, X., Bilal, M., Liang, X., (2021). MODIS high-resolution MAIAC aerosol product: Global validation and analysis. Atmos. Environ. 264, 118684. https://doi.org/10.1016/j.atmosenv.2021.118684 Search in Google Scholar

Ramachandran, S., Rupakheti, M., Lawrence, M.G., (2020). Aerosol-induced atmospheric heating rate decreases over South and East Asia as a result of changing content and composition. Sci. Rep. 10, 1–17. https://doi.org/10.1038/s41598-020-76936-z767624333208825 Search in Google Scholar

Ramanathan, V., Crutzen, P. J., Kiehl, J. T., Rosenfeld, D., (2001). Aerosols, Climate, and the Hydrological Cycle. Sci. 294, 2119–2124. https://doi.org/10.1126/science.106403411739947 Search in Google Scholar

Ramanathan, V., Ramana, M. V., (2005). Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic Plains. Pure Appl. Geophys. 162, 1609–1626. https://doi.org/10.1007/s00024-005-2685-8 Search in Google Scholar

Ranjan, K., Sharma, V., Ghosh, S., (2022). Assessment of Urban Growth and Variation of Aerosol Optical Depth in Faridabad District, Haryana, India. Pollution, 8, 447–461. https://doi.org/10.22059/POLL.2021.329185.1163 Search in Google Scholar

Remer, A, L., Kaufman, Y.J., Tanré, D., Mattoo, S., Chu, D.A., Martins, J. V, Li, R.R., Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E., and B N Holben, (2005). The MODIS Aerosol Algorithm, Products, and Validation. J. Atmos. Sci. 62, 947–973.10.1175/JAS3385.1 Search in Google Scholar

Remer, L.A., Mattoo, S., Levy, R.C., Munchak, L.A., (2013). MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 6, 1829–1844. https://doi.org/10.5194/amt-6-1829-2013 Search in Google Scholar

Sayer, A.M., Hsu, N.C., Bettenhausen, C., Jeong, M.J., (2013). Validation and uncertainty estimates for MODIS Collection 6 “deep Blue” aerosol data. J. Geophys. Res. Atmos. 118, 7864–7872. https://doi.org/10.1002/jgrd.50600 Search in Google Scholar

Sayer, A.M., Munchak, L.A., Hsu, N.C., Levy, R.C., Bettenhausen, C., Jeong, M.-J., (2014). MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 119, 13,965-13,989. https://doi.org/10.1002/2014JD022453 Search in Google Scholar

Seinfeld, J.H., Bretherton, C., Carslaw, K.S., Coe, H., DeMott, P.J., Dunlea, E.J., Feingold, G., Ghan, S., Guenther, A.B., Kahn, R., Kraucunas, I., Kreidenweis, S.M., Molina, M.J., Nenes, A., Penner, J.E., Prather, K.A., Ramanathan, V., Ramaswamy, V., Rasch, P.J., Ravishankara, A.R., Rosenfeld, D., Stephens, G., Wood, R., (2016). Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Proc. Natl. Acad. Sci. U. S. A. 113, 5781–5790. https://doi.org/10.1073/pnas.1514043113488934827222566 Search in Google Scholar

Sen, A., Abdelmaksoud, A.S., Nazeer Ahammed, Y., Alghamdi, M.,, Banerjee, T., Bhat, M.A., Chatterjee, A., Choudhuri, A.K., Das, T., Dhir, A., Dhyani, P.P., Gadi, R., Ghosh, S., Kumar, K., Khan, A.H., Khoder, M., Maharaj Kumari, K., Kuniyal, J.C., Kumar, M., Lakhani, A., Mahapatra, P.S., Naja, M., Pal, D., Pal, S., Rafiq, M., Romshoo, S.A., Rashid, I., Saikia, P., Shenoy, D.M., Sridhar, V., Verma, N., Vyas, B.M., Saxena, M., Sharma, A., Sharma, S.K., Mandal, T.K., (2017). Variations in particulate matter over Indo-Gangetic Plains and Indo-Himalayan Range during four field campaigns in winter monsoon and summer monsoon: Role of pollution pathways. Atmos. Environ. 154, 200–224. https://doi.org/10.1016/j.atmosenv.2016.12.054 Search in Google Scholar

Sever, L., Alpert, P., Lyapustin, A., Wang, Y., Chudnovsky, A., (2017). An example of aerosol pattern variability over bright surface using high resolution MODIS MAIAC: The eastern and western areas of the Dead Sea and environs. Atmos. Environ. 165, 359–369. https://doi.org/10.1016/J.ATMOSENV.2017.06.047 Search in Google Scholar

Sharma, R., Pradhan, L., Kumari, M., Bhattacharya, P., 2022. Urban Green Space Planning and Development in Urban Cities Using Geospatial Technology: A Case Study of Noida. J. Landsc. Ecol. Republic 15, 27–46. https://doi.org/10.2478/jlecol-2022-0002 Search in Google Scholar

Sharma, V., Ghosh, S., Bilal, M., Dey, S., Singh, S., (2021). Performance of MODIS C6.1 Dark Target and Deep Blue aerosol products in Delhi National Capital Region, India: Application for aerosol studies. Atmos. Pollut. Res. 12, 65–74. https://doi.org/10.1016/j.apr.2021.01.023 Search in Google Scholar

Shastri, S., Singh, P., Verma, P., Kumar Rai, P., Singh, A.P., (2020). Land cover change dynamics and their impacts on thermal environment of Dadri block, Gautam budh Nagar, India. J. Landsc. Ecol. Republic 13, 1–13. https://doi.org/10.2478/jlecol-2020-0007 Search in Google Scholar

Singh, N., Mhawish, A., Deboudt, K., Singh, R.S., Banerjee, T., (2017a). Organic aerosols over Indo-Gangetic Plain: Sources, distributions and climatic implications. Atmos. Environ. 157, 59–74. https://doi.org/10.1016/j.atmosenv.2017.03.008 Search in Google Scholar

Singh, N., Murari, V., Kumar, M., Barman, S.C., Banerjee, T., (2017b). Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model. Environ. Pollut. 223, 121–136. https://doi.org/10.1016/j.envpol.2016.12.07128063711 Search in Google Scholar

Tanré, D., Kaufman, Y.J., Herman, M., Mattoo, S., (1997). Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances. J. Geophys. Res. Atmos. 102, 16971–16988.10.1029/96JD03437 Search in Google Scholar

Tao, M., Wang, J., Li, R., Wang, Lili, Wang, Lunche, Wang, Z., Tao, J., Che, H., Chen, L., (2019). Performance of MODIS high-resolution MAIAC aerosol algorithm in China: Characterization and limitation. Atmos. Environ. 213, 159–169. https://doi.org/10.1016/J.ATMOSENV.2019.06.004 Search in Google Scholar

Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P.K., Veefkind, P., Levelt, P., (2007). Aerosols and surface UV products form Ozone Monitoring Instrument observations: An overview. J. Geophys. Res. Atmos. 112, 1–14. https://doi.org/10.1029/2007JD008809 Search in Google Scholar

Verma, R.C.; S. ’B ’, (2017). Urbanisation in Delhi- NCR (National Capital Region), KPMG. Search in Google Scholar

Wei, J., Peng, Y., Guo, J., Sun, L., (2019). Performance of MODIS Collection 6.1 Level 3 aerosol products in spatial-temporal variations over land. Atmos. Environ. 206, 30–44. https://doi.org/10.1016/j.atmosenv.2019.03.001 Search in Google Scholar

Winker, D.M., Pelon, J., (2003). The CALIPSO Mission. Int. Geosci. Remote Sens. Symp. 2, 1329–1331. https://doi.org/10.1175/2010bams3009.1 Search in Google Scholar

Xie, Y., Zhang, Y., Xiong, X., Qu, J.J., Che, H., (2011). Validation of MODIS aerosol optical depth product over China using CARSNET measurements. Atmos. Environ. 45, 5970–5978. https://doi.org/10.1016/j.atmosenv.2011.08.002 Search in Google Scholar

Zhang, W., Gu, X., Xu, H., Yu, T., Zheng, F., (2016). Assessment of OMI near-UV aerosol optical depth over Central and East Asia. J. Geophys. Res. 121, 382–398. https://doi.org/10.1002/2015JD024103 Search in Google Scholar

Zhang, Z., Wu, W., Fan, M., Wei, J., Tan, Y., Wang, Q., (2019). Evaluation of MAIAC aerosol retrievals over China. Atmos. Environ. 202, 8–16. https://doi.org/10.1016/j.atmosenv.2019.01.013 Search in Google Scholar

Zheng, M., Cass, G.R., Schauer, J.J., Edgerton, E.S., (2002). Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environ. Sci. Technol. 36, 2361–2371. https://doi.org/10.1021/es011275x12075791 Search in Google Scholar

eISSN:
1805-4196
Idioma:
Inglés
Calendario de la edición:
3 veces al año
Temas de la revista:
Geosciences, other, Life Sciences, Ecology