1. bookVolumen 12 (2019): Edición 3 (December 2019)
Detalles de la revista
Primera edición
20 Jun 2008
Calendario de la edición
3 veces al año
Acceso abierto

Monitoring and Prediction of Land Use Land Cover Changes and its Impact on Land Surface Temperature in the Central Part of Hisar District, Haryana Under Semi-Arid Zone of India

Publicado en línea: 30 Dec 2019
Volumen & Edición: Volumen 12 (2019) - Edición 3 (December 2019)
Páginas: 117 - 140
Recibido: 24 Sep 2019
Aceptado: 07 Dec 2019
Detalles de la revista
Primera edición
20 Jun 2008
Calendario de la edición
3 veces al año

Almalki, K. A., & Al-Namazi, A. A. (2019). Impact of the industrial sector on surface temperatures in Jubail City, Saudi Arabia using remote sensing techniques. Spatial Information Research, 27(3), 329-337.10.1007/s41324-019-00237-5Search in Google Scholar

Ansari, A., & Golabi, M. H. (2019). Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands – A case study: Meighan Wetland, Iran. International Soil and Water Conservation Research, 7(1), 64-70.10.1016/j.iswcr.2018.10.001Search in Google Scholar

Artis, D.A. and Carnahan, W.H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12, 313–329.10.1016/0034-4257(82)90043-8Search in Google Scholar

Card, D. H. (1982). Using known map categorical marginal frequencies to improve estimates of thematic map accuracy. Photogrammetric Engineering and Remote Sensing, 48 (3), 431–439.Search in Google Scholar

Carlson, T.N., Ripley, D.A., 1997. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 62, 241–25210.1016/S0034-4257(97)00104-1Search in Google Scholar

Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37(1), 35–46.10.1016/0034-4257(91)90048-BSearch in Google Scholar

De Sherbinin, A., Schiller, A. and Pulsipher, A. (2007). The vulnerability of global cities to climate hazards. Environment and Urbanization, 19, 39-64.10.1177/0956247807076725Search in Google Scholar

Dou, P. and Chen, Y. (2017). Dynamic monitoring of land-use/land-cover change and urban expansion in Shenzhen using Landsat imagery from 1988 to 2015, International Journal of Remote Sensing, 38 (19), 5388-5407.10.1080/01431161.2017.1339926Search in Google Scholar

Duan, S.-B., Li, Z.-L. Wang, C., Zhang, S., Tang, B.-H., Leng, P. & Gao, M.-F. (2019). Land-surface temperature retrieval from Landsat 8 single- channel thermal infrared data in combination with NCEP reanalysis data and ASTER GED product. International Journal of Remote Sensing, 40 (5-6), 1763-1778.10.1080/01431161.2018.1460513Search in Google Scholar

Estoque, R.C., Murayama, Y., Myint, S.W., (2017). Effects of landscape composition and pattern on land surface temperature: an urban heat island study in the megacities of Southeast Asia. Science of the Total Environment, 577, 349–359.10.1016/j.scitotenv.2016.10.19527832866Search in Google Scholar

Fan, C., Myint, S., Kaplan, S., Middel, A., Zheng, B., Rahman, A., Huang, H.P., Brazel, A. and Blumberg, D., (2017). Understanding the impact of urbanization on surface urban heat islands—a longitudinal analysis of the oasis effect in subtropical desert cities. Remote Sensing, 9(7), p.672.10.3390/rs9070672Search in Google Scholar

Gibson, L., Munch, Z., Palmer, A., and Mantel, S. (2018). Future land cover change scenarios in South African grasslands e implications of altered biophysical drivers on land management. Heliyon 4 (2018) e00693.10.1016/j.heliyon.2018.e00693605219330035238Search in Google Scholar

Gober, P., Brazel, A., Quay, R., Myint, S., Grossman-Clarke, S., Miller, A., Rossi, S., (2009). Using watered landscapes to manipulate urban heat island effects: how much water will it take to cool Phoenix? Journal of the Americal Planning and Association 76 (1), 109–121.10.1080/01944360903433113Search in Google Scholar

Government of India (GOI), (2011). Census of India 2011: Towards a bright future. Registrar General and Census Commissioner of India, Ministry of Home Affairs, New Delhi, India.Search in Google Scholar

Herold, M., Couclelis H. and K. C. Clarke, (2005). The Role of Spatial Metrics in the Analysis and Modeling of Urban Land Use Change. Computer, Environment and Urban Systems, 29 (4), 369-399.10.1016/j.compenvurbsys.2003.12.001Search in Google Scholar

Hondula, D.M., Davis, R.E., Leisten, M.J., Saha, M.V., Veazay, L.M. and Wegner, C.R. (2012). Finescale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983–2008: a case-series analysis. Environmental Health 11 (1), 1–11.Search in Google Scholar

Imam, A.U. and Banerjee, U.K. (2016). Urbanisation and greening of Indian cities: Problems, practices, and policies. Ambio, 45(4), 442-457.10.1007/s13280-015-0763-4482470326768899Search in Google Scholar

Islam K., Jashimuddin, M., Nath, B. and Nath, T.K. (2018). Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh. The Egyptian Journal of Remote Sensing and Space Science, 21 (1), 37-47.10.1016/j.ejrs.2016.12.005Search in Google Scholar

Jain, A.K., Hooda, R.S., Nath, J. and Manchanda, M.L. (1991). Mapping and Monitoring of Urban Landuse of Hisar Town, Haryana Using Remote Sensing Techniques. Journal of the Indian Sodety of Remote Sensing, 19(2), 125-134.10.1007/BF03008127Search in Google Scholar

Kaushik, V., Saroj, Sharma M.P., Hooda R.S. (2016). Land Use / Land Cover Change detection by Using Geo-Spatial Techniques of Hisar city Haryana (India). International Journal of Science, Engineering and Technology Research, 4(4), 672-676.Search in Google Scholar

Kayet, N., Pathak, K., Chakrabarty, A. and Sahoo, S. (2016). Spatial impact of land use/land cover change on surface temperature distribution in Saranda Forest, Jharkhand. Modeling Earth Systems and Environment 2, 127.10.1007/s40808-016-0159-xSearch in Google Scholar

Kikon, N., Singh, P. and Singh, S.K. and Vyas, A. (2016). Assessment of urban heat islands (UHI) of Noida City, India using multi-temporal satellite data. Sustainable Cities and Society, 22, 19-28.10.1016/j.scs.2016.01.005Search in Google Scholar

Kolb, M., Mas, J.F., Galicia, L., (2013). Evaluating drivers and transition potential models in a complex landscape in southern Mexico. International Journal of Geographical Information Science, 27 (9), 1804-1827.10.1080/13658816.2013.770517Search in Google Scholar

Kumar, P., Kumar, S. and Shekhar, C., (2016). Urban Sprawl of Hisar city using Remote sensing & GIS –A case study. International Journal of Science, Engineering and Technology Research, 5(5), 1762-1767.Search in Google Scholar

Lo, C.P., Quattrochi, D.A. and Luvall, J.C., (1997). Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. International Journal of Remote Sensing, 18, pp. 287–303.10.1080/014311697219079Search in Google Scholar

Luck, M., Wu, J.G. (2002). A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landsc Ecol 17(4):327–339.Search in Google Scholar

Markham, B.L. & Barker, J.L. (1986). Landsat MSS and TM post-calibration dynamic ranges, exoatmosphericreflectances and at-satellite temperatures. EOSAT Landsat Technical Notes, 1, 3-8.Search in Google Scholar

Newbold, K.B., and Scott, D. (2013). Migration, commuting distance, and urban sustainability in Ontario’s Greater Golden Horseshoe: Implications of the Greenbelt and Places to Grow legislation. Can. Geogr., 57(4), 474-487.10.1111/j.1541-0064.2013.12044.xSearch in Google Scholar

Rajesh (2018). Land use land cover thematic mapping using remote sensing & GIS Techniques: A case study of district Hisar. International Journal of Applied Research,4(7), 6-10.Search in Google Scholar

Ramachandra, T.V., Kumar, U., (2008). Wetlands of greater Bangalore, India: automatic delineation through pattern classifiers. Electronic Green Journal (26), Spring.10.5070/G312610729Search in Google Scholar

Ramachandra, T.V., Aithal, B., Durgappa S (2012). Insights to urban dynamics through landscape spatial pattern analysis. International Journal of Applied Earth Observation and Geoinformation 18 (2012), 329–343.Search in Google Scholar

Riffat, S., Powell, R. and Aydin, D. (2016). Future cities and environmental sustainability. Future Cities and Environment, 2, 1.10.1186/s40984-016-0014-2Search in Google Scholar

Rodriguez-Galiano, V, Chica-Olmo, M. (2012). Land cover change analysis of a Mediterranean area in Spain using different sources of data: multi-seasonal Landsat images, land surface temperature, digital terrain models and texture. Applied Geography, 35(1):208–218.Search in Google Scholar

Shashikant, Singh, P., Doi, R.D., Sharma, A., Kumar, R., Bhatti, P. (2015). Urban Sprawl and Spatio Temporal Analysis of Hisar City in Haryana using Remote Sensing & GIS Technology. International Journal of Science, Engineering and Technology Research, 4 (12), 4388-4392.Search in Google Scholar

Shastri, H., Barik, B., Ghosh, S., Venkataraman C. and Sadavarte, P. (2017). Flip flop of Day-night and SummerWinter Surface Urban Heat Island Intensity in India. Scientific reports, 7, 40178.10.1038/srep40178522032128067276Search in Google Scholar

Sobrino, J.A., Jiménez-Muñoz, J.C., Paolini, L., (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 90 (4), 434–440.10.1016/j.rse.2004.02.003Search in Google Scholar

Tewolde, M.G.; Cabral, P (2011). Urban sprawl analysis and modelling in Asmara, Eritrea. Remote Sensing, 3, 2148–2165.10.3390/rs3102148Search in Google Scholar

Tran, D.X., Pla, F., Carmona, P.L., Myint, S.W., Caetano, M. and Kieu, H.V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119-132.10.1016/j.isprsjprs.2017.01.001Search in Google Scholar

UNFPA (United Nations Population Fund), (2009). Annual Report 2008, pp.44.Search in Google Scholar

United Nations (2018). The 2018 Revision of World Urbanization Prospects. New York: UN.10.18356/02486bd4-enSearch in Google Scholar

Wang, Y.-C., Hu, B.K.H., Myint, S.W., Feng, C.-C., Chow, W.T.L., Passy P.F. (2018). Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Science of the Total Environment, 643, 738–75010.1016/j.scitotenv.2018.06.20929957438Search in Google Scholar

Weng, Q. and Yang, S., (2006). Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS. Environmental Monitosing and Assessment 117 (1), 463–489.10.1007/s10661-006-0888-916917724Search in Google Scholar

Wulder, M.A., White, J.C., Loveland, T.R., Woodcock, C.E., Belward, A.S., Cohen, W.B., Fosnight, E.A., Shaw, J., Masek, J.G. and Roy, D.P (2016). The global Landsat archive: Status, consolidation, and direction. Remote Sensing of Environment, 185, 271–283.10.1016/j.rse.2015.11.032Search in Google Scholar

Yirsaw, E., Wu, W., Shi, X., Temesgen, H., & Bekele, B. (2017). Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang Region. Sustainability, 9 (7), 1204.10.3390/su9071204Search in Google Scholar

Yue, W., Xu, J., Tan, W. and Xu, L. (2007). The relationship between land surface temperature and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. International Journal of Remote Sensing, 28 (15), 3205–3226.10.1080/01431160500306906Search in Google Scholar

Zha, Y., Gao, J. and Ni, S. (2005). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote SenSearch in Google Scholar

Zhang, Y., Odeh, I. O., & Han, C. (2009). Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. International Journal of Applied Earth Observation and Geoinformation, 11(4), 256-26410.1016/j.jag.2009.03.001Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo