Cite

1. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of Plaque Formation and Rupture. Circ Res. 2014;114:1852-1866.10.1161/CIRCRESAHA.114.302721 Search in Google Scholar

2. Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. The Lancet. 2017;389:197-210.10.1016/S0140-6736(16)30677-8 Search in Google Scholar

3. Mitra N, Hodas R, Szabó E, Parajkó Z, Benedek T, Benedek I. Impact of Coronary Plaque Vulnerability on Acute Cardiovascular Events – Design of a CT-based 2-year Follow-up Study. Journal of Interdisciplinary Medicine. 2019;4:64-71.10.2478/jim-2019-0015 Search in Google Scholar

4. Braunwald E. Epilogue: What Do Clinicians Expect From Imagers? J Am Coll Cardiol. 2006;47:C101-C103.10.1016/j.jacc.2005.10.07216631504 Search in Google Scholar

5. Benedek T, Maurovich-Horváth P, Ferdinandy P, Merkely B. The Use of Biomarkers for the Early Detection of Vulnerable Atherosclerotic Plaques and Vulnerable Patients. A Review. Journal of Cardiovascular Emergencies. 2016;2:106-113.10.1515/jce-2016-0017 Search in Google Scholar

6. Choi SY, Mintz GS. What Have We Learned About Plaque Rupture in Acute Coronary Syndromes? Curr Cardiol Rep. 2010;12:338-343.10.1007/s11886-010-0113-x Search in Google Scholar

7. Stefanadis C, Antoniou C, Tsiachris D, Pietri P. Coronary Atherosclerotic Vulnerable Plaque: Current Perspectives. J Am Heart Assoc. 2017;6.10.1161/JAHA.117.005543552404428314799 Search in Google Scholar

8. Brown AJ, Teng Z, Evans PC, Gillard JH, Samady H, Bennett MR. Role of biomechanical forces in the natural history of coronary atherosclerosis. Nat Rev Cardiol. 2016;13:210-220.10.1038/nrcardio.2015.20326822720 Search in Google Scholar

9. Schaar J. Terminology for high-risk and vulnerable coronary artery plaques. Eur Heart J. 2004;25:1077-1082.10.1016/j.ehj.2004.01.00215191780 Search in Google Scholar

10. Davies MJ. Coronary disease: the pathophysiology of acute coronary syndromes. Heart. 2000;83:361-366.10.1136/heart.83.3.361172933410677422 Search in Google Scholar

11. Bentzon JF, Falk E. Atherosclerosis, Vulnerable Plaques, and Acute Coronary Syndromes. In: Genomic and Personalized Medicine. Elsevier, 2013; p. 530-539.10.1016/B978-0-12-382227-7.00047-1 Search in Google Scholar

12. Nyulas T, Chiţu M, Mester A, et al. Computed Tomography Biomarkers of Vulnerable Coronary Plaques. Journal of Interdisciplinary Medicine. 2016;1:263-266.10.1515/jim-2016-0068 Search in Google Scholar

13. Andreou I, Antoniadis AP, Shishido K, et al. How Do We Prevent the Vulnerable Atherosclerotic Plaque From Rupturing? Insights From In Vivo Assessments of Plaque, Vascular Remodeling, and Local Endothelial Shear Stress. J Cardiovasc Pharmacol Ther. 2015;20:261-275.10.1177/1074248414555005 Search in Google Scholar

14. Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R. Concept of Vulnerable/Unstable Plaque. Arterioscler Thromb Vasc Biol. 2010;30:1282-1292.10.1161/ATVBAHA.108.179739 Search in Google Scholar

15. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol. 2010;10:36-46.10.1038/nri2675 Search in Google Scholar

16. Gertz SD, Roberts WC. Hemodynamic shear force in rupture of coronary arterial atherosclerotic plaques. Am J Cardiol. 1990;66:1368-1372.10.1016/0002-9149(90)91170-B Search in Google Scholar

17. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275.10.1161/01.ATV.20.5.1262 Search in Google Scholar

18. Falk E, Shah PK, Fuster V. Coronary Plaque Disruption. Circulation. 1995;92:657-671.10.1161/01.CIR.92.3.657 Search in Google Scholar

19. Falk E. Pathogenesis of Atherosclerosis. J Am Coll Cardiol. 2006;47:C7-C12.10.1016/j.jacc.2005.09.068 Search in Google Scholar

20. Fleg JL, Stone GW, Fayad ZA, et al. Detection of High-Risk Atherosclerotic Plaque. JACC Cardiovasc Imaging. 2012;5:941-955.10.1016/j.jcmg.2012.07.007 Search in Google Scholar

21. Wang X, Connolly TM. Biomarkers of Vulnerable Atheromatous Plaques. In: Advances in Clinical Chemistry. Vol 50. Elsevier, 2010; p. 1-22.10.1016/S0065-2423(10)50001-5 Search in Google Scholar

22. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med. 1997;336:1276-1282.10.1056/NEJM1997050133618029113930 Search in Google Scholar

23. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89-95.10.1067/mcp.2001.11398911240971 Search in Google Scholar

24. Feuerstein GZ, Chavez J. Translational Medicine for Stroke Drug Discovery: The Pharmaceutical Industry Perspective. Stroke. 2009;40:S121-S125.10.1161/STROKEAHA.108.53510419064772 Search in Google Scholar

25. Mayeux R. Biomarkers: Potential uses and limitations. NeuroRX. 2004;1:182-188.10.1602/neurorx.1.2.18253492315717018 Search in Google Scholar

26. Wang J, Balu N, Canton G, Yuan C. Imaging biomarkers of cardiovascular disease. J Magn Reson Imaging. 2010;32:502-515.10.1002/jmri.22266293530920815049 Search in Google Scholar

27. Casscells W, Naghavi M, Willerson JT. Vulnerable Atherosclerotic Plaque: A Multifocal Disease. Circulation. 2003;107:2072-2075.10.1161/01.CIR.0000069329.70061.6812719287 Search in Google Scholar

28. Fayad ZA, Fuster V. Clinical Imaging of the High-Risk or Vulnerable Atherosclerotic Plaque. Circ Res. 2001;89:305-316.10.1161/hh1601.09559611509446 Search in Google Scholar

29. Crouse JR. Thematic review series: Patient-Oriented Research. Imaging atherosclerosis: state of the art. J Lipid Res. 2006;47:1677-1699.10.1194/jlr.R600012-JLR20016705212 Search in Google Scholar

30. Nahrendorf M, Jaffer FA, Kelly KA, et al. Noninvasive Vascular Cell Adhesion Molecule-1 Imaging Identifies Inflammatory Activation of Cells in Atherosclerosis. Circulation. 2006;114:1504-1511.10.1161/CIRCULATIONAHA.106.64638017000904 Search in Google Scholar

31. Jaffer FA, Libby P, Weissleder R. Optical and Multimodality Molecular Imaging: Insights Into Atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:1017-1024.10.1161/ATVBAHA.108.165530273322819359659 Search in Google Scholar

32. Tarkin JM, Dweck MR, Evans NR, et al. Imaging Atherosclerosis. Circ Res. 2016;118:750-769.10.1161/CIRCRESAHA.115.306247 Search in Google Scholar

33. Burgstahler C, Reimann A, Beck T, et al. Influence of a Lipid-Lowering Therapy on Calcified and Noncalcified Coronary Plaques Monitored by Multislice Detector Computed Tomography: Results of the New Age II Pilot Study. Invest Radiol. 2007;42:189-195.10.1097/01.rli.0000254408.96355.85 Search in Google Scholar

34. Sarno G, Decraemer I, Vanhoenacker PK, et al. On the Inappropriateness of Noninvasive Multidetector Computed Tomography Coronary Angiography to Trigger Coronary Revascularization. JACC Cardiovasc Interv. 2009;2:550-557.10.1016/j.jcin.2009.03.009 Search in Google Scholar

35. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD. Coronary Calcification, Coronary Disease Risk Factors, C-Reactive Protein, and Atherosclerotic Cardiovascular Disease Events. J Am Coll Cardiol. 2005;46:158-165.10.1016/j.jacc.2005.02.088 Search in Google Scholar

36. Tardif JC, Lesage F, Harel F, Romeo P, Pressacco J. Imaging Biomarkers in Atherosclerosis Trials. Circ Cardiovasc Imaging. 2011;4:319-333.10.1161/CIRCIMAGING.110.962001 Search in Google Scholar

37. Adamson PD, Newby DE. Non-invasive imaging of the coronary arteries. Eur Heart J. 2019;40:2444-2454.10.1093/eurheartj/ehy670 Search in Google Scholar

38. Schroeder S, Kopp AF, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol. 2001;37:1430-1435.10.1016/S0735-1097(01)01115-9 Search in Google Scholar

39. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319-326.10.1016/j.jacc.2007.03.04417659199 Search in Google Scholar

40. Lindsay AC, Choudhury RP. Form to function: current and future roles for atherosclerosis imaging in drug development. Nat Rev Drug Discov. 2008;7:517-529.10.1038/nrd258818483481 Search in Google Scholar

41. Amirbekian V, Lipinski MJ, Briley-Saebo KC, et al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci. 2007;104:961-966.10.1073/pnas.0606281104176633417215360 Search in Google Scholar

42. McAteer MA, Schneider JE, Ali ZA, et al. Magnetic Resonance Imaging of Endothelial Adhesion Molecules in Mouse Atherosclerosis Using Dual-Targeted Microparticles of Iron Oxide. Arterioscler Thromb Vasc Biol. 2008;28:77-83.10.1161/ATVBAHA.107.145466348178317962629 Search in Google Scholar

43. Mitsumori LM, Hatsukami TS, Ferguson MS, Kerwin WS, Cai J, Yuan C. In vivo accuracy of multisequence MR imaging for identifying unstable fibrous caps in advanced human carotid plaques. J Magn Reson Imaging. 2003;17:410-420.10.1002/jmri.1026412655579 Search in Google Scholar

44. Botnar RM, Buecker A, Wiethoff AJ, et al. In Vivo Magnetic Resonance Imaging of Coronary Thrombosis Using a Fibrin-Binding Molecular Magnetic Resonance Contrast Agent. Circulation. 2004;110:1463-1466.10.1161/01.CIR.0000134960.31304.8715238457 Search in Google Scholar

45. Winter PM, Neubauer AM, Caruthers SD, et al. Endothelial α ν β 3 Integrin–Targeted Fumagillin Nanoparticles Inhibit Angiogenesis in Atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2103-2109.10.1161/01.ATV.0000235724.11299.7616825592 Search in Google Scholar

46. Motoyama S, Sarai M, Harigaya H, et al. Computed Tomographic Angiography Characteristics of Atherosclerotic Plaques Subsequently Resulting in Acute Coronary Syndrome. J Am Coll Cardiol. 2009;54:49-57.10.1016/j.jacc.2009.02.06819555840 Search in Google Scholar

47. Rudd JHF, Warburton EA, Fryer TD, et al. Imaging Atherosclerotic Plaque Inflammation With [18F]-Fluorodeoxyglucose Positron Emission Tomography. Circulation. 2002;105:2708-2711.10.1161/01.CIR.0000020548.60110.7612057982 Search in Google Scholar

48. Tawakol A, Migrino R, Hoffmann U, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol. 2005;12:294-301.10.1016/j.nuclcard.2005.03.00215944534 Search in Google Scholar

49. Wu YW, Kao HL, Huang CL, et al. The effects of 3-month atorvastatin therapy on arterial inflammation, calcification, abdominal adipose tissue and circulating biomarkers. Eur J Nucl Med Mol Imaging. 2012;39:399-407.10.1007/s00259-011-1994-722109668 Search in Google Scholar

50. Figueroa AL, Subramanian SS, Cury RC, et al. Distribution of Inflammation Within Carotid Atherosclerotic Plaques With High-Risk Morphological Features: A Comparison Between Positron Emission Tomography Activity, Plaque Morphology, and Histopathology. Circ Cardiovasc Imaging. 2012;5:69-77.10.1161/CIRCIMAGING.110.95947822038986 Search in Google Scholar

51. Ishii H, Nishio M, Takahashi H, et al. Comparison of Atorvastatin 5 and 20 mg/d for Reducing F-18 Fluorodeoxyglucose Uptake in Atherosclerotic Plaques on Positron Emission Tomography/Computed Tomography: A Randomized, Investigator-Blinded, Open-Label, 6-Month Study in Japanese Adults Scheduled for Percutaneous Coronary Intervention. Clin Ther. 2010;32:2337-2347.10.1016/j.clinthera.2010.12.00121353104 Search in Google Scholar

52. Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451:953-957.10.1038/nature0680318288186 Search in Google Scholar

eISSN:
2501-8132
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, other, Internal Medicine, Surgery, Emergency Medicine and Intensive-Care Medicine