Acceso abierto

An effective integration of the PM 16-QAM modulation in enhanced metropolitan networks with the EDFA amplification


Cite

[1] “The zettabyte era:Trends and analysis”, Annual Internet Report, Ciscohttps://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html, 2017.Search in Google Scholar

[2] E. Agrell et al, “Roadmap of optical communications”, Journal of Optics vol. 18, no. 6, 063002, May 2016, DOI: 10.1088/2040-8978/18/6/063002.Open DOISearch in Google Scholar

[3] E. Lach and W. Idler, “Modulation formats for 100 G and beyond”, Optical Fiber Technology vol. 17, no. 5, pp. 377-386, Oct. 2011, DOI: 10.1016/j.yofte.2011.07.012.Open DOISearch in Google Scholar

[4] A. Jain, P. Krishnamurthy, P. Landais and P. Anandarajah, “EKF for joint mitigation of phase noise, frequency offset and nonlinearity in 400 Gb/s PM-16-QAM and 200 Gb/s PM-QPSK systems”, IEEE Photonics Journal vol. 9, no. 1, 7200110, pp. 1-10, Feb. 2017, DOI: 10.1109/JPHOT.2017.2649223.Open DOISearch in Google Scholar

[5] K. Roberts, Q. Zhuge, I. Monga, S. Gareau, and C. Laperle, “Beyond 100 Gb/s: capacity, flexibility, and network optimization”, IEEE/OSA Journal of Optical Communications and Networking vol. 9, no. 4, pp. C12-C24, Apr. 2017, DOI: 10.1364/JOCN.9.000C12.Open DOISearch in Google Scholar

[6] T. Xia et al, “Transmission of 400 G PM-16 QAM channels over long-haul distance with commercial all-distributed Raman amplification system and aged standard SMF in field”, OFC 2014, San Francisco, USA, paper Tu2B. 1, Mar. 2014, DOI: 10.1364/OFC.2014.Tu2B.1.Open DOISearch in Google Scholar

[7] A. J. Stark, “16 QAM for next-generation optical transport”, PhD dissertation, Georgia Institute of Technology, Atlanta, USA, May 2013.Search in Google Scholar

[8] R. Róka and F. Čertík, “Simulation tools for broadband passive optical networks”, Simulation Technologies in Networking and Communications: Selecting the Best Tool for the Test A. Pathan, M. Monowar, S. Khan (Eds), Boca Raton, USA, CRC Press, Taylor & Francis Group, pp. 337-363, Nov. 2014, DOI: 10.1201/b17650.Open DOISearch in Google Scholar

[9] R. Róka and F. Čertík, “Simulation and analysis of the signal transmission in the optical transmission medium,”, SIMULTECH 2015 Colmar, France, pp. 219-226, Jul. 2015, DOI: 10.5220/0005569602190226.Open DOISearch in Google Scholar

[10] P. Šalík, R. Róka, and G. Tomáš, “Simulation platform of optical transmission system in Matlab Simulink”, Procedia computer science vol. 134, pp. 196-203, Jul. 2018, DOI: 10.1016/j.procs.2018.07.162.Open DOISearch in Google Scholar

[11] M. Čučka, P. Šalík, R. Róka, P. Münster, and M. Filka, “Simulation models of pulse generator for OTDR in Matlab and VPI photonics”, TSP 2018 Athens, Greece. pp. 179-182, Jul. 2018, DOI: 10.1109/TSP.2018.8441274.Open DOISearch in Google Scholar

[12] R. Róka, “Fixed transmission media”, in Technology and Engineering Applications of Simulink, S. Chakravarty (Ed), Rijeka, Croatia, InTech, May 2012, DOI: 10.5772/37442.Open DOISearch in Google Scholar

[13] R. Róka, “The environment of fixed transmission media and their negative influences in the simulation”, Int Journal of Mathematics and Computers in Simulation, vol. 9, pp. 190-205, Sep. 2015.Search in Google Scholar

[14] P. Šalík and R. Róka “Analysis of possibilities for numerical simulations of continuous wave DFB laser”, ICUMT 2017, Munich, Germany, pp. 215-219, Nov. 2017, DOI: 10.1109/ICUMT.2017.8255119.Open DOISearch in Google Scholar

[15] P. Šalík and R. Róka “Analysis and simulation of dynamic properties of the DFB laser”, Przeglad elektrotechniczny, vol. 94, no. 7, pp. 17-20, Jul. 2018, DOI: 10.15199/48.2018.07.04.Open DOISearch in Google Scholar

[16] I. Fatadin, D. Ives, and M. Wicks “Numerical simulation of intensity and phase noise from extracted parameters for CW DFB lasers”, IEEE Journal of Quantum Electronics, vol. 42, no. 9, pp. 934-941, Sep. 2006. DOI: 10.1109/JQE.2006.880117.Open DOISearch in Google Scholar

[17] M. Ahmed, M. Yamada, and M. Saito, “Numerical modeling of intensity and phase noise in semiconductor lasers”, IEEE Journal of Quantum Electronics, vol. 37, no. 12, pp. 1600-1610, Dec. 2001, DOI: 10.1109/3.970907.Open DOISearch in Google Scholar

[18] L. N. Binh, Optical fiber communication systems with MATLAB and Simulink Models, Boca Raton, USA, CRC Press, Taylor and Francis Group, 2015.10.1201/b17781Search in Google Scholar

[19] L. N. Binh, Advanced digital optical communications, Boca Raton, USA, CRC Press, Taylor and Francis Group, 2015.Search in Google Scholar

[20] “Laser Components InGaAs avalanche photodiode IAG series”, Data sheet, https://www.lasercomponents.com/de/?embedded=1&file=fileadmin/user_upload/home/Datasheets/lcd/iagseries_ingaas.pdf&no_cache=1, 2018.Search in Google Scholar

[21] H. Tan, K. Inoue, T. Tanizawa, T. Kurosu, and S. Namiki, “Optical Nyquist filtering for elastic OTDM signals: Fundamentals and demonstrations”, Journal of Lightwave Technology, vol. 33, no. 5, pp. 1014-1026, Mar. 2015. DOI: 10.1109/JLT.2015.2399501.Open DOISearch in Google Scholar

[22] F. Lu, B. Zhang, Y. Yue, J. Anderson, and G. -K. Chang, “Investigation of pre-equalization technique for pluggable CFP2-ACO transceivers in beyond 100 Gb/s transmissions”, Journal of Lightwave Technology, vol. 35, no. 2, pp. 230-237, Jan. 2017. DOI: 10.1109/JLT.2016.2638418.Open DOISearch in Google Scholar

[23] G. Shen, Y. Zhang, X. Zhou, Y. Sheng, N. Deng, Y. Ma, and A. Lord, “Ultra-dense wavelength switched network: A special EON paradigm for metro optical networks”, IEEE Communications magazine: Optical communications, vol. 56, no. 2, pp. 189-195, Feb. 2018, DOI: 10.1109/MCOM.2018.1700025.Open DOISearch in Google Scholar

[24] A. Sheikh, C. Fougstedt, A. G. Amat, P. Johannisson, P. Larsson-Edefors, and M. Karlsson, “Dispersion compensation FIR filter with improved robustness to coefficient quantization errors”, IEEE Communications magazine: Optical communications,.Search in Google Scholar

[25] C. Dorize, A. Ghazisaeidi, J. Renaudier, and G. Charlet, “Performance analysis of nonlinear and gardner timing error detectors with frequency selective pulse shaping”, ECOC 2015, Valencia, Spain, pp. 1-3, Sep. 2015, DOI: 10.1109/ECOC.2015.7341654.Open DOISearch in Google Scholar

[26] J. Hélio, A. Souza, J. Januário, S. Rossi, A. Chiuchiarelli, J. Reis, S. Makovejs, and D. Mello, “Single-carrier 400 G unrepeatered WDM transmission using nonlinear compensation and DD-LMS with FEC feedback”, IMOC, Aguas de Lindoia, Brazil, pp.1-5, Aug.2017, DOI: 10.1109/IMOC.2017.8121038.Open DOISearch in Google Scholar

[27] P. Marin-Palomo, J. N. Kemal, P. Trocha, S. Wolf, K. Merghem, F. Lelarge, A. Ramdane, W. Freude, S. Randel, and Ch. Koos, “Comb-based WDM transmission at 10 Tbit/s using a DC-driven quantum-dash mode-locked laser diode,”, Optics Express, vol. 27, no. 22, pp. 31110-31129, Oct. 2019, DOI: 10.1364/OE.27.031110.31684350Open DOISearch in Google Scholar

eISSN:
1339-309X
Idioma:
Inglés
Calendario de la edición:
6 veces al año
Temas de la revista:
Engineering, Introductions and Overviews, other