Acceso abierto

Detection of Malignant and Benign Breast Cancer Using the ANOVA-BOOTSTRAP-SVM

  
20 may 2020

Cite
Descargar portada

Figure 1

The ANOVA-BOOTSTRAP-RBF-SVM: illustration.
The ANOVA-BOOTSTRAP-RBF-SVM: illustration.

Time comparison of SVMs’s versions on the WBCD_

Time
l2-SVM0.20
LP-SVM0.10
MILP1-NFS0.20
MILP2-NFS0.30
Fisher + SVM0.20
l1-SVM0.40
RFE-SVM0.40
l0-SVM0.50
MILP1-FS0.20
MILP2-FS0.20
ANOVA-CV-L-SVM0.04
ANOVA-CV-RBF-SVM0.05
ANOVA-Bootstrap-L-SVM0.05
ANOVA-Bootstrap-RBF-SVM0.07
ANOVA-PCA-Bootstrap-L-SVM0.07
ANOVA-PCA-Bootstrap-RBF-SVM0.06
Classical SVM with linear kernel C=10.65
Classical SVM with RBF kerne C=10.95
Classical SVM with linear kernel C=0.10.55
Classical SVM with RBF kernel C=0.11.02

Khairunnahar et al_’s results on WBCD (sigmoid classification function)_

ACCAUCkError rate
Classical system95.70882.000124.3
Proposed sigmoid97.42590.000122.6
Classical system95.42397.540314.6
Proposed sigmoid96.83199.000313.2

Vrigazova’s results on the WBCD_

ACCAUCkError rate
ANOVA-CV-RBF-SVM97.31099.75032.7
ANOVA-Bootstrap-L-SVM*97.27099.131242.7
ANOVA-Bootstrap-RBF-SVM97.56199.477272.4
ANOVA-PCA-Bootstrap-L-SVM*95.98599.221274.0
ANOVA-PCA-Bootstrap-RBF-SVM*92.90899.44537.1
Classical SVM with linear kernel C=197.54099.990302.5
Classical SVM with RBF kernel C=197.72099.990302.3
Classical SVM with linear kernel C=0.1097.89099.941302.1
Classical SVM with RBF kernel C=0.1094.55099.059305.5

Performance of modified classifications on the WBCD_

ACCAUCkError rate
LR with bootstrap97.36299.494302.6
DT with bootstrap92.08592.458307.9
SVM bootstrap97.07099.451302.9
KNN bootstrap96.15998.082303.8
ANOVA-Bootstrap-RBF-SVM C=598.56199.425271.4
ANOVA-Bootstrap-RBF-SVM C=798.20199.412301.8
ANOVA-Bootstrap-RBF-SVM C=1398.22199.088211.8
ANOVA-Bootstrap-RBF-SVM C=1498.27699.648271.7
ANOVA-Bootstrap-RBF-SVM C=3098.91399.445241.1
ANOVA-Bootstrap-RBF-SVM C=3299.62798.808270.4

Comparison of the ANOVA-BOOTSTRAP-RBF-SVM performance and the classic ANOVA-SVMs with cross validation_

AlgorithmDatsetKernelCACCAUCN of featuresError rate
ANOVA-BOOTSTRAP-RBF-SVMWPBCrbf3085.471.92014.6
rbf582.370.32617.7
rbf784.571.02015.5
rbf1383.771.52616.3
rbf1487.875.82312.2
rbf3284.671.92615.4
Mamographicrbf583.383.5416.7
Mass datasetrbf781.583.5418.5
rbf1382.483.7517.6
rbf1482.583.7517.5
rbf3284.583.7515.5
rbf3081.783.8318.3
Classic ANOVA SVMs with tenfold cross validationWPBCrbf3078.571.72621.5
rbf574.669.1325.4
rbf774.969.1325.1
rbf1375.169.12324.9
rbf1475.469.13024.6
rbf3278.571.72621.5
Mamographicrbf578.785.8321.3
Mass datasetrbf779.085.9321.0
rbf1379.586.4420.5
rbf1479.686.3420.4
rbf3280.087.0520.0
rfb3080.186.9519.9

Maldonado et al_’s results on WBCD (Mixed linear integer approach)_

ACCAUCkError rate
l2-SVM*97.90097.300312.1
LP-SVM*97.20096.500312.8
l1-SVM*97.50097.200312.5
Fisher+ SVM*97.90097.300312.1
RFE-SVM*97.90097.300232.1
l0-SVM*97.90097.300162.1
MILP1*98.10097.700261.9
MILP2*97.90097.300172.1
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Informática, Tecnologías de la información, Gestión de proyectos, Bases de datos y minería de datos