Cite

Wanhainen A, Verzini F, Herzeele IV, et al. Editor’s Choice – European Society for Vascular Surgery (ESVS) 2019 Clinical Practice Guidelines on the Management of Abdominal Aorto-iliac Artery Aneurysms. European Journal of Vascular and Endovascular Surgery. 2019;57:8–93. doi: 10.1016/j. ejvs.2018.09.020. Search in Google Scholar

Chakfé N, Diener H, Lejay A, et al. Editor’s Choice – European Society for Vascular Surgery (ESVS) 2020 Clinical Practice Guidelines on the Management of Vascular Graft and Endograft Infections. European Journal of Vascular and Endovascular Surgery. 2020;59:339–384. doi: 10.1016/j.ejvs.2019.10.016. Search in Google Scholar

Arbănaşi EM, Russu E, Mureşan AV, Arbănaşi EM, Kaller R. Ulnar-basilic arteriovenous fistula with multilocular gigantic aneurysmal dilatation: a case report. Acta Marisiensis – Seria Medica. 2021;67:244–246. doi: 10.2478/amma-2021-0035. Search in Google Scholar

Kaller R, Mureșan AV, Arbănași EM, et al. Uncommon Surgical Management by AVF between the Great Saphenous Vein and Anterior Tibial Artery for Old Radiocephalic AVF Failure. Life. 2022;12:529. doi: 10.3390/life12040529. Search in Google Scholar

Sabik JF, Lytle BW, Blackstone EH, Houghtaling PL, Cosgrove DM. Comparison of Saphenous Vein and Internal Thoracic Artery Graft Patency by Coronary System. Ann Thorac Surg. 2005;79:544–551. doi: 10.1016/j.athoracsur.2004.07.047. Search in Google Scholar

Kaller R, Russu E, Arbănași EM, et al. Intimal CD31-Positive Relative Surfaces Are Associated with Systemic Inflammatory Markers and Maturation of Arteriovenous Fistula in Dialysis Patients. Journal of Clinical Medicine. 2023;12:4419. doi: 10.3390/jcm12134419. Search in Google Scholar

Mitra AK, Gangahar DM, Agrawal DK. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunology & Cell Biology. 2006;84:115–124. doi: 10.1111/j.1440-1711.2005.01407.x. Search in Google Scholar

Muto A, Model L, Ziegler K, Eghbalieh SDD, Dardik A. Mechanisms of Vein Graft Adaptation to the Arterial Circulation. Circ J. 2010;74:1501–1512. doi: 10.1253/circj.CJ-10-0495. Search in Google Scholar

Cheng J, Du J. Mechanical Stretch Simulates Proliferation of Venous Smooth Muscle Cells Through Activation of the Insulin-Like Growth Factor-1 Receptor. Arterioscler Thromb Vasc Biol. 2007;27:1744–1751. doi: 10.1161/ATVBAHA.107.147371. Search in Google Scholar

Harskamp RE, Lopes RD, Baisden CE, de Winter RJ, Alexander JH. Saphenous Vein Graft Failure After Coronary Artery Bypass Surgery: Pathophysiology, Management, and Future Directions. Ann Surg. 2013;257:824. doi: 10.1097/SLA.0b013e318288c38d. Search in Google Scholar

Liu SQ, Ruan YY, Tang D, Li YC, Goldman J, Zhong L. A possible role of initial cell death due to mechanical stretch in the regulation of subsequent cell proliferation in experimental vein grafts. Biomech Model Mechanobiol. 2002;1:17–27. doi: 10.1007/s10237-002-0003-2. Search in Google Scholar

Vijayan V, Smith FCT, Angelini GD, Bulbulia RA, Jeremy JY. External Supports and the Prevention of Neointima Formation in Vein Grafts. Eur J Vasc Endovasc Surg. 2002;24:13–22. doi: 10.1053/ejvs.2002.1676. Search in Google Scholar

Jeremy JY, Bulbulia R, Johnson JL, et al. A bioabsorbable (polyglactin), nonrestrictive, external sheath inhibits porcine saphenous vein graft thickening. J Thorac Cardiovasc Surg. 2004;127:1766–1772. doi: 10.1016/j.jtcvs.2003.09.054. Search in Google Scholar

Dashwood M, Angelini G, Wan S, et al. Does external stenting reduce porcine vein-graft occlusion via an action on vascular nerves? J Card Surg. 2002;17:556–560. doi: 10.1046/j.1540-8191.2002.01012.x. Search in Google Scholar

Angelini GD, Lloyd C, Bush R, Johnson J, Newby AC. An external, oversized, porous polyester stent reduces vein graft neointima formation, cholesterol concentration, and vascular cell adhesion molecule 1 expression in cholesterol-fed pigs. J Thorac Cardiovasc Surg. 2002;124:950–956. doi: 10.1067/mtc.2002.127004. Search in Google Scholar

Redmond RW, Kochevar IE. Medical Applications of Rose Bengal- and Riboflavin-Photosensitized Protein Crosslinking. Photochem Photobiol. 2019;95:1097–1115. doi: 10.1111/php.13126. Search in Google Scholar

Chirila TV, Suzuki S. Photocrosslinking of Adventitial Collagen in the Porcine Abdominal Aorta: A Preliminary Approach to a Strategy for Prevention of Aneurysmal Rupture. Designs. 2022;6:5. doi: 10.3390/designs6010005. Search in Google Scholar

Chirila TV, Suzuki S. Effects of Ultraviolet-A Radiation on Enzymatically Degraded Tunica Adventitia of the Porcine Abdominal Aorta. Biomedical Materials & Devices. Published online April 28, 2023. doi:10.1007/s44174-023-00080-1. Search in Google Scholar

Liang NL, Alarcon LH, Jeyabalan G, Avgerinos ED, Makaroun MS, Chaer RA. Contemporary outcomes of civilian lower extremity arterial trauma. J Vasc Surg. 2016;64:731–736. doi: 10.1016/j.jvs.2016.04.052. Search in Google Scholar

Goldstein RL, McCormack MC, Mallidi S, et al. Photochemical Tissue Passivation of Arteriovenous Grafts Prevents Long-Term Development of Intimal Hyperplasia in a Swine Model. J Surg Res. 2020;253:280–287. doi: 10.1016/j.jss.2020.03.006. Search in Google Scholar

Liu C, Yu W, Chen D, Shi Y, Li Z, Gu C. Adventitial Collagen Crosslink Reduces Intimal Hyperplasia in a Rabbit Arteriovenous Graft Model. J Surg Res. 2020;246:550–559. doi: 10.1016/j.jss.2019.09.047. Search in Google Scholar

Chirila TV, Suzuki S. Ultraviolet-induced mechanical augmentation of the degraded porcine aortic adventitia: Its significance for preventing aneurysmal rupture. Global Translational Medicine. 2023;2:0897. doi: 10.36922/gtm.0897. Search in Google Scholar

eISSN:
2457-5518
Idioma:
Inglés