Acceso abierto

Modern Technology for Prevention of Sudden Cardiac Death – a Clinical Update on Device Therapy in Children with Congenital Heart Diseases


Cite

1. Chubb H, O’Neill M, Rosenthal E. Pacing and Defibrillators in Complex Congenital Heart Disease. Arrhythm Electrophysiol Rev. 2016;5:57-64. doi: 10.15420/aer.2016.2.3.Search in Google Scholar

2. Sumitomo N. Device therapy in pediatric and congenital heart disease patients. Journal of Arrhythmia. 2014;30:428-432. https://doi.org/10.1016/j.joa.2014.04.013.10.1016/j.joa.2014.04.013Open DOISearch in Google Scholar

3. Jin BK, Bang JS, Choi EY, et al. Implantable cardioverter defibrillator therapy in pediatric and congenital heart disease patients: a single tertiary center experience in Korea. Korean J Pediatr. 2013;56:125-129. doi: 10.3345/kjp.2013.56.3.125.Search in Google Scholar

4. Bogush N, Espinosa RE, Cannon BC, et al. Selecting the right defibrillator in the younger patient: Transvenous, epicardial or subcutaneous? Int J Cardiol. 2018;250:133-138. doi: 10.1016/j.ijcard.2018.02.103.Search in Google Scholar

5. Hofferberth SC, Alexander ME, Mah DY, Bautista-Hernandez V, del Nido PJ, Fynn-Thompson F. Impact of pacing on systemic ventricular function in L-transposition of the great arteries. J Thorac Cardiovasc Surg. 2016;151:131-139. doi: 10.1016/j.jtcvs.2015.08.064.Search in Google Scholar

6. Singh HR, Batra AS, Balaji S. Cardiac Pacing and Defibrillation in Children and Young Adults. Indian Pacing Electrophysiol J. 2013;13:4-13.10.1016/S0972-6292(16)30584-8Search in Google Scholar

7. Clarke TSO, Zaidi AM, Clarke B. Leadless Pacemakers: practice and promise in congenital heart disease. Journal of Congenital Cardiology. 2017;1:4. https://doi.org/10.1186/s40949-017-0007-5.10.1186/s40949-017-0007-5Open DOISearch in Google Scholar

8. Jordan CP, Freedenberg V, Wang Y, Curtis JP, Gleva MJ, Beril CI. Implant and Clinical Characteristics for Pediatric and Congenital Heart Patients in the National Cardiovascular Data Registry Implantable Cardioverter Defibrillator Registry. Circ Arrhythm Electrophysiol. 2014;7:1092-1100. doi: 10.1161/CIRCEP.114.001841.Search in Google Scholar

9. Toganel R, Muntean I, Duicu C, et al. The role of eNOS and AGT gene polymorphisms in secondary pulmonary arterial hypertension in Romanian children with congenital heart disease. Revista Romana de Medicina de Laborator. 2013;21:267-274. doi: 10.2478/rrlm-2013-0031.Search in Google Scholar

10. Chiu SN, Huang SC, Wang JK, et al. Implantable cardioverter defibrillator therapy in repaired tetralogy of Fallot after pulmonary valve replacement: implications for the mechanism of ventricular arrhythmia. Int J Cardiol. 2017;249:156-160. doi: 10.1016/j.ijcard.2017.07.055.Search in Google Scholar

11. Atallah J, Erickson CC, Cecchin F, et al. Multi-Institutional Study of Implantable Defibrillator Lead Performance in Children and Young Adults. Results of the Pediatric Lead Extractability and Survival Evaluation (PLEASE) Study. Circulation. 2013;127:2393-2402. doi: 10.1161/CIRCULATIONAHA.112.001120.Search in Google Scholar

12. Dechert BE, Bradley DJ, Serwer GA, et al. Implantable Cardioverter Defibrillator Outcomes in Pediatric and Congenital Heart Disease: Time to System Revision. Pacing Clin Electrophysiol. 2016;39:703-708. doi: 10.1111/pace.12878.Search in Google Scholar

13. Kamp AN, Von Bergen NH, Henrikson CA, et al. Implanted defibrillators in young hypertrophic cardiomyopathy patients: A multicenter study. Pediatr Cardiol. 2013;34:1620-1627. doi: 10.1007/s00246-013-0676-6.Search in Google Scholar

14. Miyake CY, Webster G, Czosek RJ, et al. Efficacy of implantable cardioverter defibrillator in young patients with catecholaminergic polymorphic ventricular tachycardia: Success depends on substrate. Circ Arrhythm Electrophysiol. 2013;6:579-587. doi: 10.1161/CIRCEP.113.000170.Search in Google Scholar

15. Lawrence D, Von Bergen N, Law IH, et al. Inappropriate ICD discharges in single-chamber versus dual-chamber devices in the pediatric and young adult population. J Cardiovasc Electrophysiol. 2009;20:287-290. doi: 10.1111/j.1540-8167.2008.01322.x.Search in Google Scholar

16. Von Bergen NH, Atkins DL, Dick M II, et al. Multicenter study of effectiveness of implantable cardioverter defibrillators in children and young adults with heart disease. Pediatr Cardiol. 2011;32:399-415. doi: 10.1007/s00246-010-9866-7.Search in Google Scholar

17. Horner JM, Kinoshita M, Webster TL, Haglund CM, Friedman PA, Ackerman MJ. Implantable cardioverter defibrillator therapy for congenital Long QT syndrome: A single-center experience. Heart Rhythm. 2010;7:1616-1622. doi: 10.1016/j.hrthm.2010.08.023.Search in Google Scholar

18. Alter P, Waldhans S, Plachta E, Moosdorf R, Grimm W. Complications of implantable cardioverter defibrillator therapy in 440 consecutive patients. Pacing Clin Electrophysiol. 2005;28:926-932. doi: 10.1111/j.1540-8159.2005.00195.x.Search in Google Scholar

19. DeWitt ES, Triedman JK, Cecchin F, et al. The Dependence of Risks and Benefits in Pediatric Primary Prevention Implantable Cardioverter-Defibrillator Therapy. Circ Arrhythm Electrophysiol. 2014;7:1057-1063. doi: 10.1161/CIRCEP.114.001569.Search in Google Scholar

20. Garnreiter JM, Pilcher TA, Etheridge SP, Saarel EV. Inappropriate ICD shocks in pediatrics and congenital heart disease patients: Risk factors and programming strategies. Heart Rhythm. 2015;12:937-942. doi: 10.1016/j.hrthm.2015.01.028.Search in Google Scholar

21. Suteu CC, Muntean I, Benedek T, et al. Giant dissecting ventricular septal haematoma associated with critical congenital heart disease. Interact Cardiovasc Thorac Surg. 2016;23:837-838. doi: 10.1093/icvts/ivw223.Search in Google Scholar

22. Kwak JG, Cho S, Kim WH. Surgical Outcomes of Permanent Epicardial Pacing in Neonates and Young Infants Less than 1 Year of Age. Heart, lung and Circulation. 2018;pii:S1443-9506(18)31774-8. doi: 10.1016/j.hlc.2018.06.1039. [Epub ahead of print]Search in Google Scholar

23. Campos-Quintero A, Garcia-Montes JA, Cruz-Arias R, Zabal- Cerdeira C, Calderon-Colmenero J, Sandoval JP. Endocardial Pacing in Infants and Young Children Weighing Less Than 10 Kilograms. Rev Esp Cardiol. 2018;71:48-61. doi: 10.1016/j.rec.2017.02.036.Search in Google Scholar

24. Baruteau AE, Pass RH, Thambo JB, et al. Congenital and childhood atrioventricular blocks: pathophysiology and contemporary management. Eur J Pediatr. 2016;175:1235-1248. doi: 10.1007/s00431-016-2748-0.Search in Google Scholar

25. Liberman L, Silver ES, Chai PJ, Anderson BR. Incidence and characteristics of heart block after heart surgery in pediatric patients: A multicentre study. J Thorac Cardiovasc Surg. 2016;152:1-6. doi: 10.1016/j.jtcvs.2016.03.081.Search in Google Scholar

26. Lau KC, Gaynor JW, Fuller SM, Smoots KA, Shah MJ. Longterm atrial and ventricular epicardial pacemaker lead survival after cardiac operations in pediatric patients with congenital heart disease. Heart Rhythm. 2015;12:566-573. doi: 10.1016/j.hrthm.2014.12.001.Search in Google Scholar

27. Balaji S, Sreeram N. The development of pacing induced ventricular dysfunction is influenced by the underlying structural heart defect in children with congenital heart disease. Indian Heart Journal. 2017;69:240-243. doi: 10.1016/j.ihj.2016.11.325.Search in Google Scholar

28. Friedberg MK, Schwartz SM, Zhang H, et al. Hemodynamic effects of sustained postoperative cardiac resynchronization therapy in infants after repair of congenital heart disease: Results of randomized clinical trial. Heart Rhythm. 2017;14:240-247. doi: 10.1016/j.hrthm.2016.09.025.Search in Google Scholar

29. Mulpuru SK, Madhavan M, McLeod CJ, Cha YM, Friedman PA. Cardiac Pacemakers: Function, Troubleshooting, and Management. J Am Coll Cardiol. 2017;69:189-210. doi: 10.1016/j.jacc.2016.10.061.Search in Google Scholar

30. Bordachar P, Marquie C, Pospiech T, et al. Subcutaneous implantable cardioverter defibrillators in children, young adults and patients with congenital heart disease. Int J Cardiol. 2016;203:251-258. doi: 10.1016/j.ijcard.2015.09.083.Search in Google Scholar

eISSN:
2457-5518
Idioma:
Inglés