1. bookVolumen 9 (2020): Edición 1 (January 2020)
Detalles de la revista
License
Formato
Revista
eISSN
2336-9205
Primera edición
11 Mar 2014
Calendario de la edición
3 veces al año
Idiomas
Inglés
Acceso abierto

Interest Rate and Exchange Rate Volatility Spillovers: Multiscale Perspective of Monetary Policy Transmission in Ghana

Publicado en línea: 28 Jan 2020
Volumen & Edición: Volumen 9 (2020) - Edición 1 (January 2020)
Páginas: 135 - 167
Recibido: 21 Feb 2019
Aceptado: 27 Jun 2019
Detalles de la revista
License
Formato
Revista
eISSN
2336-9205
Primera edición
11 Mar 2014
Calendario de la edición
3 veces al año
Idiomas
Inglés

1. Aguiar-Conraria, L., Azevedo, N., & Soares, N, J., (2008). Using wavelets to decompose the time–frequency effects of monetary policy. Physica A, 387(12): 2863-2878. https://doi.org/10.1016/j.physa.2008.01.06310.1016/j.physa.2008.01.063Abierto DOISearch in Google Scholar

2. Aguiar-Conraria, L., Martins, M., & Soares, N, J., (2012). The yield curve and the macro-economy across time and frequencies. Journal of Economic Dynamics and Control, Vol. 36, Issue 12, pp. 1950-1970. https://doi.org/10.1016/j.jedc.2012.05.00810.1016/j.jedc.2012.05.008Abierto DOISearch in Google Scholar

3. Airaudo, M., Buffie, E. F., & Zanna, L-F., (2016). Inflation targeting and exchange rate management in least developed countries. IMF Working Paper, WP/16/55, pp. 1-65.Search in Google Scholar

4. Akosah, N. K., (2015). Is the monetary policy rate effective? Recent evidence from Ghana. Graduate Institute of International and Development Studies Working Paper No. 14/2015.Search in Google Scholar

5. Akosah, N. K., & Dasah, J.B., (2015). Is monetary policy effective in dampening fiscally-induced exchange market pressures? Evidence from Ghana. Macroeconomics and Finance in Emerging Market Economies, 9(2), 148-166. http://dx.doi.org/10.1080/17520843.2015.107787410.1080/17520843.2015.1077874Abierto DOISearch in Google Scholar

6. Andries, A.M., Ihnatov, I., & Tiwari, A.K., (2016). Comovement of exchange rate. A wavelet analysis. Emerging Market Finance and Trade, 52, 574-588. https://dx.doi.org/10.1018/1540496X.2014.99856310.1018/1540496X.2014.998563Abierto DOISearch in Google Scholar

7. Awdeh A., (2018). Monetary policy and economic growth in Lebanon. Journal of Central Banking Theory and Practice, 2, 147-171. http://dx.doi.org/10.2478/jcbtp-2019-001810.2478/jcbtp-2019-0018Abierto DOISearch in Google Scholar

8. Baek, E., & Brock, W., (1992). A general test for nonlinear Granger causality: Bivariate model. Working paper, Iowa State University and University of Wisconsin, Madison.Search in Google Scholar

9. Barunik, J., & Krehlik, T., (2015). Measuring the frequency dynamics of financial and macroeconomic connectedness. Available at: arXiv.org > stat > arXiv:1507.01729.Search in Google Scholar

10. Barunik, J., Kocenda, E., & Vacha, L., (2017). Asymmetric volatility connectedness on the forex market. Journal of International Money and Finance 77, 39-56. http://dx.doi.org/10.1016/j.jimonfin.2017.06.00310.1016/j.jimonfin.2017.06.003Search in Google Scholar

11. Bawumia, M., (2010). Monetary policy and financial sector reform in Africa: Ghana’s experience. Oxford University Press, ISBN: 978-1-453854501Search in Google Scholar

12. Boako, G., & Alagidede, P., (2017). Co-movement of African’s equity markets: Regional and global analysis in the frequency-time domain. Physica A, 468, 359-380. http://dx.doi.org/10.1016/j.physa.2016.10.08810.1016/j.physa.2016.10.088Abierto DOISearch in Google Scholar

13. Cohen. J., Cohen. P., West. S., & Aitken, L., (2003). Applied Multiple Regression and Correlation Analysis. Third edition, 1, Lawrence Erlbaum Associates, Inc., New Jersey.Search in Google Scholar

14. Corbet, S., Meegan, A., Larkin, C., Lucey, B., & Yarovaya, L., (2018). Exploring the dynamic relationships between cryptocurrencies and other financial assets. Economics Letters, 165, 28-34. https://doi.org/10.1016/j.econlet.2018.01.004.10.1016/j.econlet.2018.01.004Abierto DOISearch in Google Scholar

15. Curcuru, S. E., De Pooter, M., & Eckerd, G., (2018). Measuring monetary policy spillovers between U.S. and German bond yields. International Finance Discussion papers 1226. https://doi.org/10.17016/IFDP.2018.122610.17016/IFDP.2018.1226Abierto DOISearch in Google Scholar

16. Dar, A.B., Samantaraya, A., & Shah, F.A., (2014). The predictive power of yield spread: evidence from wavelet analysis. Empirical Economics, 46(3) 887-901. https://doi.org/10.1007/s00181-013-0705-610.1007/s00181-013-0705-6Abierto DOISearch in Google Scholar

17. Das, D., Kannadhasan, M., & Al-Yahyaee, K., (2018). A wavelet analysis of co-movement in Asian gold markets. Physica A, 492, 192-206. https://doi.org/10.1016/j.physa.2017.09.06110.1016/j.physa.2017.09.061Abierto DOISearch in Google Scholar

18. Daubechies, I., (1992). Ten lectures on wavelets. SIAM, Philadelphia.10.1137/1.9781611970104Search in Google Scholar

19. Diebold, F.X., & Yilmaz, K., (2009). Measuring financial asset return and volatility spillovers, with application to global equity markets. The Economic Journal 119, 158-171. https://doi.org/10.1111/j.1468-0297.2008.02208.x10.1111/j.1468-0297.2008.02208.xAbierto DOISearch in Google Scholar

20. Diebold, F.X., & Yilmaz, K., (2012). Better to give than to receive: Predictive directional measurement of volatility spillovers. International Journal of Forecasting, 28(1): 57–66. https://doi.org/10.1016/j.ijforecast.2011.02.00610.1016/j.ijforecast.2011.02.006Abierto DOISearch in Google Scholar

21. Diks, C., & Panchenko, V., (2005). A note on the Hiemstra-Jones test for Granger non-causality. Studies in Nonlinear Dynamics & Econometrics, 9(2): 1558-3708. https://doi.org/10.2202/1558-3708.1234.10.2202/1558-3708.1234Abierto DOISearch in Google Scholar

22. Diks, C., & Panchenko, V., (2006). A new statistic and practical guidelines for nonparametric granger causality testing. Journal of Economic Dynamics & Control, 30, 1647-1669. https://doi.org/10.1016/j.jedc.2005.08.00810.1016/j.jedc.2005.08.008Abierto DOISearch in Google Scholar

23. Diks, C., & Wolski, M., (2016). Nonlinear Granger causality: Guidelines for multivariate analysis. Journal of Applied Econometrics, 31, 1333-1351. https://doi.org/10.1002/Jae.249510.1002/Jae.2495Abierto DOISearch in Google Scholar

24. Brock, W., Dechert, D., Sheinkman, J., & LeBaron, B., (1996). A test for independence based on the correlation dimension. Econometric Reviews, 15(3), 197–235.10.1080/07474939608800353Abierto DOISearch in Google Scholar

25. Fernández-Macho, J., (2012). Wavelet multiple correlation and cross-correlation: A multiscale analysis of Eurozone stock markets. Physica A, 391, 1097-1104. https://doi.org/10.1016/j.physa.2011.11.00210.1016/j.physa.2011.11.002Abierto DOISearch in Google Scholar

26. Gallegati, M., Gallegati, M., Ramsey, J. B., & Semmler, W., (2011). The US wage Philips curve across frequencies and over time. Oxford Bulletin of Economics and Statistics, 74(4), 489-508.10.1111/j.1468-0084.2010.00624.xAbierto DOISearch in Google Scholar

27. Gencay, R., Selcuk, F., & Witcher, A., (2002). an introduction of wavelets and other filtering methods in finance and economics. Academic Press.Search in Google Scholar

28. Granger, C. W. J., (1969). Investigating causal relations by econometric models and cross- sectional methods. Econometrica, 37(3), 424-438. https://doi.org/10.2307/191279110.2307/1912791Abierto DOISearch in Google Scholar

29. Greenwood-Nimmo, W., Nguyen, V.H., & Rafferty, B., (2016). Risk and return spillovers among the G10 currencies. Journal of Financial Markets 31, 43-62. https://doi.org/10.1016/j.finmar.2016.05.00110.1016/j.finmar.2016.05.001Search in Google Scholar

30. Hiemstra, C., & Jones, J. D., (1994). Testing for linear and nonlinear Granger causality in the stock price-volume relation. Journal of Finance, 49(5), 1639-1664. https://doi.org/10.2307/232926610.2307/2329266Abierto DOISearch in Google Scholar

31. Hausmann, R., Pinizza, U., & Stein, E., (2001a). Why do countries float the way they float? Journal of Development Economics, 66(2), 387-414. https://doi.org/10.1016/S0304-3878(01)00168-710.1016/S0304-3878(01)00168-7Abierto DOISearch in Google Scholar

32. Hausmann, R., Pinizza, U., & Stein, E., (2001b). Original sin, passthrough and fear of floating. https://www.researchgate.net/publication/228692710Search in Google Scholar

33. International Monetary Fund, (2014). Annual report on exchange rate arrangements and exchange restrictions. IMF, Washington, D.C (October 2014). ISSN (Online) 2304-0831. http://www.imf.org/external/pub/nft/2014/areaers/ar2014.pdfSearch in Google Scholar

34. Karanaso, M., Ali, F.M., Margaronis, Z., & Nath, R., (2018). Modelling time varying volatility spillovers and conditional correlations across commodity metal futures. International Review of Financial Analysis, 57, 246-256. https://doi.org/10.1016/j.irfa.2017.11.00310.1016/j.irfa.2017.11.003Abierto DOISearch in Google Scholar

35. Koop, G., Pesaran, M. H., & Potter, S. M., (1996). Impulse response analysis in nonlinear multivariate models. Journal of Econometrics, 74(1): 119-147.Search in Google Scholar

36. Kovanen, A., (2011). Monetary policy transmission in Ghana: Does the interest rate channel work? IMF Working Paper, No. 11/275, pp. 1-33.Search in Google Scholar

37. Krušković, B. D., (2018). Exchange rate and interest rate in the monetary policy reaction function. Journal of Central Banking Theory and Practice, 1, 55-86. http://dx.doi.org/10.1515/jcbtp-2017-000410.1515/jcbtp-2017-0004Abierto DOISearch in Google Scholar

38. Lynch, P. E., & Zumbach, G. O., (2003). Market heterogeneities and the causal structure of volatility. Journal of Quantitative Finance 3(4): 320-331. https://doi.org/10.1088/1469-7688/3/4/30810.1088/1469-7688/3/4/308Abierto DOISearch in Google Scholar

39. McCallum, B.T., (2007). Monetary policy in East Asia: The case of Singapore. Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, 25(1), 13-28, Available: RePEc:ime:imeme s:v:25:y:2007:i:s1:p:13-28Search in Google Scholar

40. Mishkin, S.M., & Schmidt-Hebbel, K., (2002). One decade of inflation targeting in the world: what do we know and what do we need to know. In: Norman Loayza and Raimundo Soto, eds., Inflation Targeting: Design, Performance, Challenges (Central Bank of Chile: Santiago 2002): 171-219.Search in Google Scholar

41. Percival, D. B., & Walden, A., (2000). Wavelet methods for time series analysis. Cambridge University Press.Search in Google Scholar

42. Pesaran, H. H., & Shin, Y. B., (1998). Generalized impulse response analysis in linear multivariate models. Economics Letters, 58(1): 17-29. https://doi.org/10.1016/S0165-1765(97)00214-010.1016/S0165-1765(97)00214-0Abierto DOISearch in Google Scholar

43. Praščević, A & Ješić, M., (2019). Modelling macroeconomic policymakers’ interactions under zero lower bound environment: The new Keynesian theoretical approach. Journal of Central Banking Theory and Practice, 1, 5-38. http://dx.doi.org/10.2478/jcbtp-2017-000110.2478/jcbtp-2017-0001Abierto DOISearch in Google Scholar

44. Tiwari A. K., Dar, A. B., Bhanja, N., & Shar, A., (2013). Stock market integration in Asian countries: evidence from wavelet multiple correlations. Journal of Economic Integration, 28: 441-456.10.11130/jei.2013.28.3.441Abierto DOISearch in Google Scholar

45. Whitcher, B., Guttorp, P., & Percival, D. B., (2000). Wavelet analysis of covariance with application to atmosphere time series. Journal of Geophysical Research: Atmospheres, 105(D11): 14941-1496210.1029/2000JD900110Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo