Acceso abierto

Simulated Climate Warming Influenced Colony Microclimatic Conditions and Gut Bacterial Abundance of Honeybee Subspecies Apis mellifera ligustica and A. mellifera sinisxinyuan


Cite

Abou-Shaara, H.F., Al-Ghamdi, A.A., Mohamed, A.A. (2012). Tolerance of two honey bee races to various temperature and relative humidity gradients. Environmental and Experimental Biology, 10(4), 133–138. Abou-ShaaraH.F. Al-GhamdiA.A. MohamedA.A. 2012 Tolerance of two honey bee races to various temperature and relative humidity gradients Environmental and Experimental Biology 10 4 133 138 Search in Google Scholar

Al-Ghamdi, A.A., Alsharhi, M.M., Abou-Shaara, H.F. (2016). Current status of beekeeping in the Arabian countries and urgent needs for its development inferred from a socio-economic analysis. Asian Journal of Agricultural Research, 10, 87–98. https://doi.org/10.3923/ajar.2016.87.98 Al-GhamdiA.A. AlsharhiM.M. Abou-ShaaraH.F. 2016 Current status of beekeeping in the Arabian countries and urgent needs for its development inferred from a socio-economic analysis Asian Journal of Agricultural Research 10 87 98 https://doi.org/10.3923/ajar.2016.87.98 10.3923/ajar.2016.87.98 Search in Google Scholar

Aragón, P., Rodríguez, M.A., Olalla-Tárraga, M.A., Lobo, J.M. (2010). Predicted impact of climate change on threatened terrestrial vertebrates in central Spain highlights differences between endotherms and ectotherms. Animal Conservation, 13(4), 363–373. https://doi.org/10.1111/j.1469-1795.2009.00343.x AragónP. RodríguezM.A. Olalla-TárragaM.A. LoboJ.M. 2010 Predicted impact of climate change on threatened terrestrial vertebrates in central Spain highlights differences between endotherms and ectotherms Animal Conservation 13 4 363 373 https://doi.org/10.1111/j.1469-1795.2009.00343.x 10.1111/j.1469-1795.2009.00343.x Search in Google Scholar

Becher, M.A., Scharpenberg, H., Moritz, R.F.A. (2009). Pupal developmental temperature and behavioral specialization of honeybee workers (Apis mellifera L.). Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 195(7), 673–679. https://doi.org/10.1007/s00359-009-0442-7 BecherM.A. ScharpenbergH. MoritzR.F.A. 2009 Pupal developmental temperature and behavioral specialization of honeybee workers (Apis mellifera L.) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 195 7 673 679 https://doi.org/10.1007/s00359-009-0442-7 10.1007/s00359-009-0442-7 Search in Google Scholar

Bestion, E., Jacob, S., Zinger, L., Di Gesu, L., Richard, M., White, J., Cote, J. (2017). Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nature Ecology & Evolution, 1(6), pp. 0161. https://doi:10.1038/s41559-017-0161 BestionE. JacobS. ZingerL. Di GesuL. RichardM. WhiteJ. CoteJ. 2017 Climate warming reduces gut microbiota diversity in a vertebrate ectotherm Nature Ecology & Evolution 1 6 0161 https://doi:10.1038/s41559-017-0161 10.1038/s41559-017-0161 Search in Google Scholar

Bestion, E., Teyssier, A., Richard, M., Clobert, J., Cote, J. (2015). Live fast, die young: experimental evidence of population extinction risk due to climate change. PLoS Biology, 13(10), e1002281. https://doi.org/10.1371/journal.pbio.1002281 BestionE. TeyssierA. RichardM. ClobertJ. CoteJ. 2015 Live fast, die young: experimental evidence of population extinction risk due to climate change PLoS Biology 13 10 e1002281 https://doi.org/10.1371/journal.pbio.1002281 10.1371/journal.pbio.1002281 Search in Google Scholar

Brune, A., & Friedrich, M. (2000). Microecology of the termite gut: structure and function on a microscale. Current Opinion in Microbiology, 3(3), 263–269. https://doi.org/10.1016/s1369-5274(00)00087-4 BruneA. FriedrichM. 2000 Microecology of the termite gut: structure and function on a microscale Current Opinion in Microbiology 3 3 263 269 https://doi.org/10.1016/s1369-5274(00)00087-4 10.1016/S1369-5274(00)00087-4 Search in Google Scholar

Chen, C., Liu, Z., Pan, Q., Chen, X., Wang, H., Guo, H., … Shi, W. (2016). Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. ssp. Molecular Biology and Evolution, 33(5), 1337–1348. https://doi.org/10.1093/molbev/msw017 ChenC. LiuZ. PanQ. ChenX. WangH. GuoH. ShiW. 2016 Genomic analyses reveal demographic history and temperate adaptation of the newly discovered honey bee subspecies Apis mellifera sinisxinyuan n. ssp Molecular Biology and Evolution 33 5 1337 1348 https://doi.org/10.1093/molbev/msw017 10.1093/molbev/msw017483922126823447 Search in Google Scholar

Chevalier, C., Stojanović, O., Colin, D.J., Suarez-Zamorano, N., Tarallo, V., Veyrat-Durebex, C., Montet, X. (2015). Gut microbiota orchestrates energy homeostasis during cold. Cell, 163(6), 1360–1374. https://doi.org/10.1016/j.cell.2015.11.004 ChevalierC. StojanovićO. ColinD.J. Suarez-ZamoranoN. TaralloV. Veyrat-DurebexC. MontetX. 2015 Gut microbiota orchestrates energy homeostasis during cold Cell 163 6 1360 1374 https://doi.org/10.1016/j.cell.2015.11.004 10.1016/j.cell.2015.11.00426638070 Search in Google Scholar

Colman, D.R., Toolson, E.C., Takacs-Vesbach, C.D. (2012). Do diet and taxonomy influence insect gut bacterial communities?. Molecular Ecology, 21(20), 5124–5137. https://doi.org/10.1111/j.1365-294x.2012.05752.x ColmanD.R. ToolsonE.C. Takacs-VesbachC.D. 2012 Do diet and taxonomy influence insect gut bacterial communities? Molecular Ecology 21 20 5124 5137 https://doi.org/10.1111/j.1365-294x.2012.05752.x 10.1111/j.1365-294X.2012.05752.x22978555 Search in Google Scholar

Corn, P.S. (2005). Climate change and amphibians. Animal Biodiversity and Conservation, 28(1), 59–67. CornP.S. 2005 Climate change and amphibians Animal Biodiversity and Conservation 28 1 59 67 Search in Google Scholar

Cox-Foster, D.L., Conlan, S., Holmes, E.C., Palacios, G., Evans, J.D., Moran, N.A., Martinson, V. (2007). A metagenomic survey of microbes in honey bee colony collapse disorder. Science, 318(5848), 283–287. https://doi.org/10.1126/science.1146498 Cox-FosterD.L. ConlanS. HolmesE.C. PalaciosG. EvansJ.D. MoranN.A. MartinsonV. 2007 A metagenomic survey of microbes in honey bee colony collapse disorder Science 318 5848 283 287 https://doi.org/10.1126/science.1146498 10.1126/science.114649817823314 Search in Google Scholar

Crotti E., Balloi A., Hamdi C., Sansonno L., Marzorati M., Gonella E. (2012). Microbial symbionts: a resource for the management of insect-related problems. Microbial Biotechnology, 5(3), 307–317. https://doi.org/10.1111/j.1751-7915.2011.00312.x CrottiE. BalloiA. HamdiC. SansonnoL. MarzoratiM. GonellaE. 2012 Microbial symbionts: a resource for the management of insect-related problems Microbial Biotechnology 5 3 307 317 https://doi.org/10.1111/j.1751-7915.2011.00312.x 10.1111/j.1751-7915.2011.00312.x382167522103294 Search in Google Scholar

Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C., Martin, P.R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences, 105(18), 6668–6672. https://doi.org/10.1073/pnas.0709472105 DeutschC.A. TewksburyJ.J. HueyR.B. SheldonK.S. GhalamborC.K. HaakD.C. MartinP.R. 2008 Impacts of climate warming on terrestrial ectotherms across latitude Proceedings of the National Academy of Sciences 105 18 6668 6672 https://doi.org/10.1073/pnas.0709472105 10.1073/pnas.0709472105237333318458348 Search in Google Scholar

Dillon, R.J., & Dillon, V.M. (2004). The gut bacteria of insects: nonpathogenic interactions. Annual Review of Entomology, 49(1), 71–92. https://doi.org/10.1146/annurev.ento.49.061802.123416 DillonR.J. DillonV.M. 2004 The gut bacteria of insects: nonpathogenic interactions Annual Review of Entomology 49 1 71 92 https://doi.org/10.1146/annurev.ento.49.061802.123416 10.1146/annurev.ento.49.061802.12341614651457 Search in Google Scholar

Ellis, M.B., Nicolson, S.W., Crewe, R.M., Dietemann, V. (2008). Hygropreference and brood care in the honeybee (Apis mellifera). Journal of Insect Physiology, 54(12), 1516–1521. https://doi.org/10.1016/j.jinsphys.2008.08.011 EllisM.B. NicolsonS.W. CreweR.M. DietemannV. 2008 Hygropreference and brood care in the honeybee (Apis mellifera) Journal of Insect Physiology 54 12 1516 1521 https://doi.org/10.1016/j.jinsphys.2008.08.011 10.1016/j.jinsphys.2008.08.01118822293 Search in Google Scholar

Engel, P., & Moran, N.A. (2013). The gut microbiota of insects-diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025 EngelP. MoranN.A. 2013 The gut microbiota of insects-diversity in structure and function FEMS Microbiology Reviews 37 5 699 735 https://doi.org/10.1111/1574-6976.12025 10.1111/1574-6976.1202523692388 Search in Google Scholar

Groh, C., Tautz, J., Rossler, W. (2004) Synaptic organization in the adult honey-bee brain is influenced by brood-temperature control during pupal development. Proceedings of the National Academy of Sciences, 101(12), 4268–4273. https://doi.org/10.1073/pnas.0400773101 GrohC. TautzJ. RosslerW. 2004 Synaptic organization in the adult honey-bee brain is influenced by brood-temperature control during pupal development Proceedings of the National Academy of Sciences 101 12 4268 4273 https://doi.org/10.1073/pnas.0400773101 10.1073/pnas.040077310138473015024125 Search in Google Scholar

Hongoh, Y., Ekpornprasit, L., Inoue, T., Moriya, S., Trakulnaleamsai, S., Ohkuma, M., Noparatnaraporn, N., Kudo, T. (2006). Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Molecular Ecology, 15(2), 505–516. https://doi.org/10.1111/j.1365-294x.2005.02795.x HongohY. EkpornprasitL. InoueT. MoriyaS. TrakulnaleamsaiS. OhkumaM. NoparatnarapornN. KudoT. 2006 Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus Molecular Ecology 15 2 505 516 https://doi.org/10.1111/j.1365-294x.2005.02795.x 10.1111/j.1365-294X.2005.02795.x16448416 Search in Google Scholar

Hroncova, Z., Havlik, J., Killer, J., Doskocil, I., Tyl, J., Kamler, M. (2015). Variation in honey bee gut microbial diversity affected by ontogenetic stage, age and geographic location. PLoS One, 10(3), e0118707. https://doi.org/10.1371/journal.pone.0118707 HroncovaZ. HavlikJ. KillerJ. DoskocilI. TylJ. KamlerM. 2015 Variation in honey bee gut microbial diversity affected by ontogenetic stage, age and geographic location PLoS One 10 3 e0118707 https://doi.org/10.1371/journal.pone.0118707 10.1371/journal.pone.0118707435883425768309 Search in Google Scholar

Huey, R.B., Deutsch, C.A., Tewksbury, J.J., Vitt, L.J., Hertz, P.E., Álvarez Pérez, H.J., Garland Jr., T. (2009). Why tropical forest lizards are vulnerable to climate warming. Proceedings of the Royal Society B: Biological Sciences, 276(1664), 1939–1948. https://doi.org/10.1098/rspb.2008.1957 HueyR.B. DeutschC.A. TewksburyJ.J. VittL.J. HertzP.E. Álvarez PérezH.J. GarlandT.Jr. 2009 Why tropical forest lizards are vulnerable to climate warming Proceedings of the Royal Society B: Biological Sciences 276 1664 1939 1948 https://doi.org/10.1098/rspb.2008.1957 10.1098/rspb.2008.1957267725119324762 Search in Google Scholar

Huey, R.B., Kearney, M.R., Krockenberger, A., Holtum, J.A., Jess, M., Williams, S.E. (2012). Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1596), 1665–1679. https://doi.org/10.1098/rstb.2012.0005 HueyR.B. KearneyM.R. KrockenbergerA. HoltumJ.A. JessM. WilliamsS.E. 2012 Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation Philosophical Transactions of the Royal Society B: Biological Sciences 367 1596 1665 1679 https://doi.org/10.1098/rstb.2012.0005 10.1098/rstb.2012.0005335065422566674 Search in Google Scholar

Human, H., Nicolson, S.W., Dietemann, V. (2006). Do honeybees, Apis mellifera scutellata, regulate humidity in their nest? Naturwissenschaften, 93(8), 397–401. https://doi.org/10.1007/s00114-006-0117-y HumanH. NicolsonS.W. DietemannV. 2006 Do honeybees, Apis mellifera scutellata, regulate humidity in their nest? Naturwissenschaften 93 8 397 401 https://doi.org/10.1007/s00114-006-0117-y 10.1007/s00114-006-0117-y Search in Google Scholar

Hylander, B.L., & Repasky, E.A. (2019). Temperature as a modulator of the gut microbiome: what are the implications and opportunities for thermal medicine? International Journal of Hyperthermia, 36(1), 83–89. https://doi.org/10.1080/02656736.2019.1647356 HylanderB.L. RepaskyE.A. 2019 Temperature as a modulator of the gut microbiome: what are the implications and opportunities for thermal medicine? International Journal of Hyperthermia 36 1 83 89 https://doi.org/10.1080/02656736.2019.1647356 10.1080/02656736.2019.1647356 Search in Google Scholar

IPCC. Climate Change 2014 (2014) Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R. K. and Meyer, L. A. (eds)]. IPCC, Geneva, Switzerland, 151 pp. https://doi.org/10.1017/cbo9781107415416 IPCC. Climate Change 2014 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Core Writing Team PachauriR. K. MeyerL. A. (eds) IPCC Geneva, Switzerland 151 https://doi.org/10.1017/cbo978110741541610.1017/CBO9781107415416 Search in Google Scholar

Johnson, R. (2010) Honey bee Colony Collapse Disorder. CRS report for congress. Congressional Research Service, 1–17. JohnsonR. 2010 Honey bee Colony Collapse Disorder CRS report for congress. Congressional Research Service, 1 17 Search in Google Scholar

Jones, J.C., & Oldroyd, B.P. (2006). Nest thermoregulation in social insects. Advances in Insect Physiology, 33, 153–191. https://doi.org/10.1016/s0065-2806(06)33003-2 JonesJ.C. OldroydB.P. 2006 Nest thermoregulation in social insects Advances in Insect Physiology 33 153 191 https://doi.org/10.1016/s0065-2806(06)33003-2 10.1016/S0065-2806(06)33003-2 Search in Google Scholar

Jones, J.C., Helliwell, P., Beekman, M., Maleszka, R., Oldroyd, B.P. (2005) The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 191(12), 1121–1129. https://doi.org/10.1007/s00359-005-0035-z JonesJ.C. HelliwellP. BeekmanM. MaleszkaR. OldroydB.P. 2005 The effects of rearing temperature on developmental stability and learning and memory in the honey bee, Apis mellifera Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 191 12 1121 1129 https://doi.org/10.1007/s00359-005-0035-z 10.1007/s00359-005-0035-z16049697 Search in Google Scholar

Jones, J.C., Myerscough, M.R., Graham, S., Oldroyd, B.P. (2004). Honey bee nest thermoregulation: diversity promotes stability. Science, 305(5682), 402–404. https://doi.org/10.1126/science.1096340 JonesJ.C. MyerscoughM.R. GrahamS. OldroydB.P. 2004 Honey bee nest thermoregulation: diversity promotes stability Science 305 5682 402 404 https://doi.org/10.1126/science.1096340 10.1126/science.109634015218093 Search in Google Scholar

Kaftanoglu, O., Linksvayer, T.A., Page, R.E. (2011). Rearing honey bees, Apis mellifera, in vitro I: effects of sugar concentrations on survival and development. Journal of Insect Science, 11(1), 96. https://doi.org/10.1673/031.011.9601 KaftanogluO. LinksvayerT.A. PageR.E. 2011 Rearing honey bees, Apis mellifera, in vitro I: effects of sugar concentrations on survival and development Journal of Insect Science 11 1 96 https://doi.org/10.1673/031.011.9601 10.1673/031.011.9601339190822208776 Search in Google Scholar

Ken, T., Bock, F., Fuchs, S., Streit, S., Brockmann, A., Tautz, J. (2005) Effects of brood temperature on honey bee Apis mellifera wing morphology. Acta Zoologica Sinica, 51(4), 768–771. KenT. BockF. FuchsS. StreitS. BrockmannA. TautzJ. 2005 Effects of brood temperature on honey bee Apis mellifera wing morphology Acta Zoologica Sinica 51 4 768 771 Search in Google Scholar

Kohl, K.D., & Yahn, J. (2016). Effects of environmental temperature on the gut microbial communities of tadpoles. Environmental Microbiology, 18(5), 1561–1565. https://doi.org/10.1111/1462-2920.13255 KohlK.D. YahnJ. 2016 Effects of environmental temperature on the gut microbial communities of tadpoles Environmental Microbiology 18 5 1561 1565 https://doi.org/10.1111/1462-2920.13255 10.1111/1462-2920.1325526940397 Search in Google Scholar

Kraus, B., & Velthuis, H.H.W. (1997). High humidity in the honey bee (Apis mellifera L.) brood nest limits reproduction of the parasitic mite Varroa jacobsoni Oud. Naturwissenschaften, 84(5), 217–218. https://doi.org/10.1007/s001140050382 KrausB. VelthuisH.H.W. 1997 High humidity in the honey bee (Apis mellifera L.) brood nest limits reproduction of the parasitic mite Varroa jacobsoni Oud Naturwissenschaften 84 5 217 218 https://doi.org/10.1007/s001140050382 10.1007/s001140050382 Search in Google Scholar

Lee, Y.K., & Mazmanian, S.K. (2010). Has the microbiota played a critical role in the evolution of the adaptive immune system? Science, 330(6012), 1768–1773. https://doi.org/10.1126/science.1195568 LeeY.K. MazmanianS.K. 2010 Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330 6012 1768 1773 https://doi.org/10.1126/science.1195568 10.1126/science.1195568315938321205662 Search in Google Scholar

Li, J., Rui, J., Li, Y., Tang, N., Zhan, S., Jiang, J., Li, X. (2020). Ambient temperature alters body size and gut microbiota of Xenopus tropicalis. Science China Life Sciences, 63(6), 915–925. https://doi.org/10.1007/s11427-019-9540-y LiJ. RuiJ. LiY. TangN. ZhanS. JiangJ. LiX. 2020 Ambient temperature alters body size and gut microbiota of Xenopus tropicalis Science China Life Sciences 63 6 915 925 https://doi.org/10.1007/s11427-019-9540-y 10.1007/s11427-019-9540-y Search in Google Scholar

Lokmer, A., & Wegner, K.M. (2015). Hemolymph micro-biome of Pacific oysters in response to temperature, temperature stress and infection. The ISME Journal, 9(3), 670–682. https://doi.org/10.1038/ismej.2014.160 LokmerA. WegnerK.M. 2015 Hemolymph micro-biome of Pacific oysters in response to temperature, temperature stress and infection The ISME Journal 9 3 670 682 https://doi.org/10.1038/ismej.2014.160 10.1038/ismej.2014.160 Search in Google Scholar

Mardan, M., & Kevan, P.G. (2002). Critical temperatures for survival of brood and adult workers of the giant honeybee, Apis dorsata (Hymenoptera: Apidae). Apidologie, 33(3), 295–302. https://doi.org/10.1051/apido:2002017 MardanM. KevanP.G. 2002 Critical temperatures for survival of brood and adult workers of the giant honeybee, Apis dorsata (Hymenoptera: Apidae) Apidologie 33 3 295 302 https://doi.org/10.1051/apido:2002017 10.1051/apido:2002017 Search in Google Scholar

McFall-Ngai, M., Heath-Heckman, E.A.C., Gillette, A.A., Peyer, S.M., Harvie, E.A. (2012). The secret languages of coevolved symbiosies: insights from the Euprymna scolopes-Vibrio fisheri symbiosis. Seminars in Immunology, 24(1), 3–8. https://doi.org/10.1016/j.smim.2011.11.006 McFall-NgaiM. Heath-HeckmanE.A.C. GilletteA.A. PeyerS.M. HarvieE.A. 2012 The secret languages of coevolved symbiosies: insights from the Euprymna scolopes-Vibrio fisheri symbiosis Seminars in Immunology 24 1 3 8 https://doi.org/10.1016/j.smim.2011.11.006 10.1016/j.smim.2011.11.006 Search in Google Scholar

Nazzi, F., Brown, S.P., Annoscia, D., Del Piccolo, F., Di Prisco, G., Varricchio, P. (2012). Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathogens, 8, e1002735. https://doi.org/10.1371/journal.ppat.1002735 NazziF. BrownS.P. AnnosciaD. Del PiccoloF. Di PriscoG. VarricchioP. 2012 Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies PLoS Pathogens 8 e1002735 https://doi.org/10.1371/journal.ppat.1002735 10.1371/journal.ppat.1002735 Search in Google Scholar

Neven, L.G. (2000). Physiological responses of insects to heat. Postharvest Biology and Technology, 21(1), 103–111. https://doi.org/10.1016/s0925-5214(00)00169-1 NevenL.G. 2000 Physiological responses of insects to heat Postharvest Biology and Technology 21 1 103 111 https://doi.org/10.1016/s0925-5214(00)00169-1 10.1016/S0925-5214(00)00169-1 Search in Google Scholar

Paaijmans, K.P., Heinig, R.L., Seliga, R.A., Blanford, J.I., Blanford, S., Murdock, C.C., Thomas, M.B. (2013). Temperature variation makes ectotherms more sensitive to climate change. Global Change Biology, 19(8), 2373–2380. https://doi.org/10.1111/gcb.12240 PaaijmansK.P. HeinigR.L. SeligaR.A. BlanfordJ.I. BlanfordS. MurdockC.C. ThomasM.B. 2013 Temperature variation makes ectotherms more sensitive to climate change Global Change Biology 19 8 2373 2380 https://doi.org/10.1111/gcb.12240 10.1111/gcb.12240390836723630036 Search in Google Scholar

Raymann, K., Shaffer, Z., Moran, N.A. (2017). Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biology, 15(3), e2001861. https://doi.org/10.1371/journal.pbio.2001861 RaymannK. ShafferZ. MoranN.A. 2017 Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees PLoS Biology 15 3 e2001861 https://doi.org/10.1371/journal.pbio.2001861 10.1371/journal.pbio.2001861534942028291793 Search in Google Scholar

Raza, M.F., Wang, Y., Cai, Z., Bai, S., Yao, Z., Awan, U.A., Zhang, H. (2020). Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis. PLoS Pathogens, 16(4), e1008441. https://doi.org/10.1371/journal.ppat.1008441 RazaM.F. WangY. CaiZ. BaiS. YaoZ. AwanU.A. ZhangH. 2020 Gut microbiota promotes host resistance to low-temperature stress by stimulating its arginine and proline metabolism pathway in adult Bactrocera dorsalis PLoS Pathogens 16 4 e1008441 https://doi.org/10.1371/journal.ppat.1008441 10.1371/journal.ppat.1008441718572532294136 Search in Google Scholar

Robinson, C.J., Schloss, P., Ramos, Y., Raffa, K., Handelsman, J. (2010). Robustness of the bacterial community in the cabbage white butterfly larval midgut. Microbial Ecology, 59(2), 199–211. https://doi.org/10.1007/s00248-009-9595-8 RobinsonC.J. SchlossP. RamosY. RaffaK. HandelsmanJ. 2010 Robustness of the bacterial community in the cabbage white butterfly larval midgut Microbial Ecology 59 2 199 211 https://doi.org/10.1007/s00248-009-9595-8 10.1007/s00248-009-9595-8283624619924467 Search in Google Scholar

Rosenberg, E., & Zilber-Rosenberg, I. (2011) Symbiosis and development the hologenome concept. Birth Defects Research Part C: Embryo Today: Reviews, 93(1), 56–66. https://doi.org/10.1002/bdrc.20196 RosenbergE. Zilber-RosenbergI. 2011 Symbiosis and development the hologenome concept Birth Defects Research Part C: Embryo Today: Reviews 93 1 56 66 https://doi.org/10.1002/bdrc.20196 10.1002/bdrc.2019621425442 Search in Google Scholar

Round, J.L., & Mazmanian, S.K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5), 313–323. https://doi.org/10.1038/nri2515 RoundJ.L. MazmanianS.K. 2009 The gut microbiota shapes intestinal immune responses during health and disease Nature Reviews Immunology 9 5 313 323 https://doi.org/10.1038/nri2515 10.1038/nri2515409577819343057 Search in Google Scholar

Ryu, J.H., Kim S.H., Lee H.Y., Bai J.Y., Nam Y.D., Bae J.W.,… Li, W.J. (2008). Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science, 319(5864), 777–82. https://doi.org/10.1126/science.1149357 RyuJ.H. KimS.H. LeeH.Y. BaiJ.Y. NamY.D. BaeJ.W. LiW.J. 2008 Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila Science 319 5864 777 82 https://doi.org/10.1126/science.1149357 10.1126/science.114935718218863 Search in Google Scholar

Seeley, T.D. (2014). Honeybee ecology: a study of adaptation in social life. (pp. 71–74). Princeton: Princeton University Press. SeeleyT.D. 2014 Honeybee ecology: a study of adaptation in social life 71 74 Princeton Princeton University Press Search in Google Scholar

Sepulveda, J., & Moeller, A.H. (2020). The effects of temperature on animal gut microbiomes. Frontiers in Microbiology, 11, 384. SepulvedaJ. MoellerA.H. 2020 The effects of temperature on animal gut microbiomes Frontiers in Microbiology 11 384 10.3389/fmicb.2020.00384707615532210948 Search in Google Scholar

Silva, I.C., Message, D., Cruz, C.D., Campos, L.A.O., Sousa-Majer, M.J. (2009). Rearing Africanized honey bee (Apis mellifera L.) brood under laboratory conditions. Genetics and Molecular Research, 8(2), 623–629. https://doi.org/10.4238/vol8-2kerr018 SilvaI.C. MessageD. CruzC.D. CamposL.A.O. Sousa-MajerM.J. 2009 Rearing Africanized honey bee (Apis mellifera L.) brood under laboratory conditions Genetics and Molecular Research 8 2 623 629 https://doi.org/10.4238/vol8-2kerr018 10.4238/vol8-2kerr01819551650 Search in Google Scholar

Sommer, F., & Bäckhed, F. (2013). The gut microbiotamasters of host development and physiology. Nature Reviews Microbiology, 11(4), 227–238. https://doi.org/10.1038/nrmicro2974 SommerF. BäckhedF. 2013 The gut microbiotamasters of host development and physiology Nature Reviews Microbiology 11 4 227 238 https://doi.org/10.1038/nrmicro2974 10.1038/nrmicro297423435359 Search in Google Scholar

Sullam, K.E., Essinger, S.D., Lozupone, C.A., O’Connor, M.P., Rosen, G.L., Knight, R.O.B., Russell, J.A. (2012). Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Molecular Ecology, 21(13), 3363–3378. https://doi.org/10.1111/j.1365-294x.2012.05552.x SullamK.E. EssingerS.D. LozuponeC.A. O’ConnorM.P. RosenG.L. KnightR.O.B. RussellJ.A. 2012 Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis Molecular Ecology 21 13 3363 3378 https://doi.org/10.1111/j.1365-294x.2012.05552.x 10.1111/j.1365-294X.2012.05552.x388214322486918 Search in Google Scholar

Switanek, M., Crailsheim, K., Truhetz, H., Brodschneider, R. (2017). Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate. Science of the Total Environment, 579, 1581–1587. https://doi.org/10.1016/j.scitotenv.2016.11.178 SwitanekM. CrailsheimK. TruhetzH. BrodschneiderR. 2017 Modelling seasonal effects of temperature and precipitation on honey bee winter mortality in a temperate climate Science of the Total Environment 579 1581 1587 https://doi.org/10.1016/j.scitotenv.2016.11.178 10.1016/j.scitotenv.2016.11.17827916302 Search in Google Scholar

Tautz, J., Maier, S., Groh, C., Roessler, W., Brockmann, A. (2003). Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development. Proceedings of the National Academy of Sciences, 100(12), 7343–7347. https://doi.org/10.1073/pnas.1232346100 TautzJ. MaierS. GrohC. RoesslerW. BrockmannA. 2003 Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development Proceedings of the National Academy of Sciences 100 12 7343 7347 https://doi.org/10.1073/pnas.1232346100 10.1073/pnas.123234610016587712764227 Search in Google Scholar

Walters, R.J., Blanckenhorn, W.U., Berger, D. (2012). Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective. Functional Ecology, 26(6), 1324–1338. https://doi.org/10.1111/j.1365-2435.2012.02045.x WaltersR.J. BlanckenhornW.U. BergerD. 2012 Forecasting extinction risk of ectotherms under climate warming: an evolutionary perspective Functional Ecology 26 6 1324 1338 https://doi.org/10.1111/j.1365-2435.2012.02045.x 10.1111/j.1365-2435.2012.02045.x Search in Google Scholar

eISSN:
2299-4831
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Life Sciences, Zoology, other