1. bookVolumen 11 (2021): Edición 3 (July 2021)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Hardware Implementation of a Takagi-Sugeno Neuro-Fuzzy System Optimized by a Population Algorithm

Publicado en línea: 29 May 2021
Volumen & Edición: Volumen 11 (2021) - Edición 3 (July 2021)
Páginas: 243 - 266
Recibido: 07 Sep 2020
Aceptado: 19 Apr 2021
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] J. R. Jang and C. T. Sun, “Functional equivalence between radial basis function networks and fuzzy inference systems,” IEEE Trans Neural Netw, vol. 4, no. 1, pp. 156–159, 1993.10.1109/72.18271018267716 Search in Google Scholar

[2] A. Przybył and M. J. Er, “The method of hardware implementation of fuzzy systems on FPGA,” in Artificial Intelligence and Soft Computing (L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, eds.), (Cham), pp. 284–298, Springer International Publishing, 2016.10.1007/978-3-319-39378-0_25 Search in Google Scholar

[3] A. Przybył, Algorytmy inteligencji obliczeniowej dla rozproszonych środowisk sieciowych. EXIT, 2017. Search in Google Scholar

[4] A. Przybył and M. J. Er, “A method for design of hardware emulators for a distributed network environment,” in Artificial Intelligence and Soft Computing (L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L. A. Zadeh, and J. M. Zurada, eds.), (Cham), pp. 318–336, Springer International Publishing, 2017.10.1007/978-3-319-59060-8_29 Search in Google Scholar

[5] J. Detrey and F. de Dinechin, “Parameterized floating-point logarithm and exponential functions for FPGAs,” Microprocessors and Microsystems, vol. 31, no. 8, pp. 537–545, 2007. Special Issue on FPGA-based Reconfigurable Computing (3).10.1016/j.micpro.2006.02.008 Search in Google Scholar

[6] P. Echeverria and M. Lopez-Vallejo, “An FPGA implementation of the powering function with single precision floating-point arithmetic,” in High Performance Digital Design in Reconfigurable Architectures, pp. 17–26, 8th Conference on Real Numbers and Computers, 2008. Search in Google Scholar

[7] J. Kluska and Z. Hajduk, “Hardware implementation of P1-TS fuzzy rule-based systems on FPGA,” in Artificial Intelligence and Soft Computing, 12th International Conference, ICAISC, Part I, vol. 7894, pp. 282–293, 2013. Search in Google Scholar

[8] J.-Y. Jhang, K.-H. Tang, C.-K. Huang, C.-J. Lin, and K.-Y. Young, “FPGA implementation of a functional neuro-fuzzy network for nonlinear system control,” Electronics, vol. 7, no. 8, 2018.10.3390/electronics7080145 Search in Google Scholar

[9] M. Dendaluce Jahnke, F. Cosco, R. Novickis, J. Pérez Rastelli, and V. Gomez-Garay, “Efficient neural network implementations on parallel embedded platforms applied to real-time torque-vectoring optimization using predictions for multi-motor electric vehicles,” Electronics, vol. 8, no. 2, 2019.10.3390/electronics8020250 Search in Google Scholar

[10] A. Brown, P. Kelly, and W. Luk, “Profiling floating point value ranges for reconfigurable implementation,” 01 2007. Search in Google Scholar

[11] A. Agrawal, J. Choi, K. Gopalakrishnan, S. Gupta, R. Nair, J. Oh, D. A. Prener, S. Shukla, V. Srinivasan, and Z. Sura, “Approximate computing: Challenges and opportunities,” in 2016 IEEE International Conference on Rebooting Computing (ICRC), pp. 1–8, 2016.10.1109/ICRC.2016.7738674 Search in Google Scholar

[12] D. Han, S. Zhou, T. Zhi, Y. Wang, and S. Liu, “Float-fix: An efficient and hardware-friendly data type for deep neural network,” International Journal of Parallel Programming, vol. 47, no. 3, pp. 345–359, 2019.10.1007/s10766-018-00626-7 Search in Google Scholar

[13] A. Przybył and J. Szczypta, “Method of evolutionary designing of FPGA-based controllers,” Przegląd Elektrotechniczny, vol. 92, no. 7, pp. 174–179, 2016.10.15199/48.2016.07.38 Search in Google Scholar

[14] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43, IEEE, 1995. Search in Google Scholar

[15] P. Dziwiński and Ł. Bartczuk, “A new hybrid particle swarm optimization and genetic algorithm method controlled by fuzzy logic,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 6, pp. 1140–1154, 2019. Search in Google Scholar

[16] P. Dziwiński, Ł. Bartczuk, and J. Paszkowski, “A new auto adaptive fuzzy hybrid particle swarm optimization and genetic algorithm,” Journal of Artificial Intelligence and Soft Computing Research, vol. 10, pp. 95–111, 2020.10.2478/jaiscr-2020-0007 Search in Google Scholar

[17] K. Łapa, K. Cpałka, Ł. Laskowski, A. Cader, and Z. Zeng, “Evolutionary algorithm with a configurable search mechanism,” Journal of Artificial Intelligence and Soft Computing Research, vol. 10, pp. 151–171, 2020.10.2478/jaiscr-2020-0011 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo