1. bookVolumen 10 (2020): Edición 2 (April 2020)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

A New Approach to Detection of Changes in Multidimensional Patterns

Publicado en línea: 20 Mar 2020
Volumen & Edición: Volumen 10 (2020) - Edición 2 (April 2020)
Páginas: 125 - 136
Recibido: 30 Aug 2019
Aceptado: 25 Feb 2020
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] A. Berlinet, G. Biau, L. Rouviere, Optimal L1 bandwidth selection for variable kernel density estimates, Statistics and Probability Letters, Elsevier, Vol. 74, No. 2, 2005, pp. 116-128.10.1016/j.spl.2005.04.036Search in Google Scholar

[2] S. Bhardwaj, A. Mittal, A survey on various edge detector techniques, Elseiver, Sci-Verse ScienceDirect, Procedia Technology 4, 2nd International Conference on Computer, Communication, Control and Information Technology, 2012, pp. 220-226.10.1016/j.protcy.2012.05.033Search in Google Scholar

[3] J.F. Canny, A computational approach to edge detection, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 8, No. 6, 1986, pp. 679-698.10.1109/TPAMI.1986.4767851Search in Google Scholar

[4] G.W. Corder, D.I. Foreman, Nonparametric Statistics: A Step-by-Step Approach. Wiley, New York, 2014.Search in Google Scholar

[5] K. Cpałka, L. Rutkowski, Evolutionary learning of flexible neuro-fuzzy systems, Proc. of the 2008 IEEE Int. Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2008), Hong Kong June 1-6, CD, 2008, pp. 969-975.10.1109/FUZZY.2008.4630487Search in Google Scholar

[6] T. Dasu, S. Krishnan, S. Venkatasubramanian, K. Yi, An information-theoretic approach to detecting changes in multi-dimensional data streams, Proc. Symp. on the Interface of Statistics, Computing Science, and Applications, 2006.Search in Google Scholar

[7] J.J. Davis, Ch.-T. Lin, G. Gillett, R. Kozma, An integrative approach to analyze EEG signals and human brain dynamics in different cognitive states, Journal of Artificial Intelligence and Soft Computing Research, Vol. 7, No. 4, 2017, pp. 287-299.10.1515/jaiscr-2017-0020Search in Google Scholar

[8] V.S. Devi, L. Meena, Parallel MCNN (PMCNN) with application to prototype selection on large and streaming data, Journal of Artificial Intelligence and Soft Computing Research, Vol. 7, No. 3, 2017, pp. 155-169.10.1515/jaiscr-2017-0011Search in Google Scholar

[9] L. Devroye, G. Lugosi, Combinatorial Methods in Density Estimation. Springer-Verlag, New York, 2001.10.1007/978-1-4613-0125-7Search in Google Scholar

[10] P. Duda, M. Jaworski, L. Rutkowski, Convergent time-varying regression models for data streams: tracking concept drift by the recursive Parzen-based generalized regression neural networks, International Journal of Neural Systems, Vol. 28, No. 2, 1750048, 2018.Search in Google Scholar

[11] P. Duda, M. Jaworski, L. Rutkowski, Knowledge discovery in data streams with the orthogonal series-based generalized regression neural networks, Information Sciences, Vol. 460-461, 2018, pp. 497-518.10.1016/j.ins.2017.07.013Search in Google Scholar

[12] P. Duda, L. Rutkowski, M. Jaworski, D. Rutkowska, On the Parzen kernel-based probability density function learning procedures over time-varying streaming data with applications to pattern classification, IEEE Transactions on Cybernetics, 2018, pp. 1-14.Search in Google Scholar

[13] R.L. Eubank, Nonparametric Regression and Spline Smoothing. 2nd edition, Marcel Dekker, New York, 1999.10.1201/9781482273144Search in Google Scholar

[14] W.J. Faithfull, J.J. Rodríguez, L.I. Kuncheva, Combining univariate approaches for ensemble change detection in multivariate data, Elseiver, Information Fusion, Vol. 45, 2019, pp. 202-214.10.1016/j.inffus.2018.02.003Search in Google Scholar

[15] T. Gałkowski, L. Rutkowski, Nonparametric recovery of multivariate functions with applications to system identification, Proceedings of the IEEE, Vol. 73, 1985, pp. 942-943.10.1109/PROC.1985.13223Search in Google Scholar

[16] T. Gałkowski, L. Rutkowski, Nonparametric fitting of multivariable functions, IEEE Transactions on Automatic Control, Vol. AC-31, 1986, pp. 785-787.10.1109/TAC.1986.1104399Search in Google Scholar

[17] T. Gałkowski, On nonparametric fitting of higher order functions derivatives by the kernel method - a simulation study, Proceedings of the 5-th Int. Symp. on Applied Stochastic Models and data Analysis, Granada, Spain, 1991, pp. 230-242.Search in Google Scholar

[18] T. Gasser, H.-G. Müller, Kernel estimation of regression functions, Lecture Notes in Mathematics, Vol. 757. Springer-Verlag, Heidelberg, 1979, pp. 23-68.10.1007/BFb0098489Search in Google Scholar

[19] T. Gasser, H.-G. Müller, Estimating regression functions and their derivatives by the kernel method, Scandinavian Journal of Statistics, Vol. 11, No. 3, 1984, pp. 171-185.Search in Google Scholar

[20] R. Grycuk, R. Scherer, M. Gabryel, New image descriptor from edge detector and blob extractor. Journal of Applied Mathematics and Computational Mechanics, Vol. 14, No.4, 2015, pp. 31-39.10.17512/jamcm.2015.4.04Search in Google Scholar

[21] R. Grycuk, M. Knop, S. Mandal, Video key frame detection based on SURF algorithm. International Conference on Artificial Intelligence and Soft Computing, ICAISC’2015, Springer, Cham, 2015, pp. 566-576.10.1007/978-3-319-19324-3_50Search in Google Scholar

[22] R. Grycuk, M. Gabryel, M. Scherer, S. Voloshynovskiy, Image descriptor based on edge detection and crawler algorithm. In International Conference on Artificial Intelligence and Soft Computing, ICAISC’2016, Springer, 2016, pp. 647-659.10.1007/978-3-319-39384-1_57Search in Google Scholar

[23] L. Györfi, M. Kohler, A. Krzyzak, H. Walk, A Distribution-Free Theory of Nonparametric Regression. Springer, 2002.10.1007/b97848Search in Google Scholar

[24] M. Jaworski, P. Duda, L. Rutkowski, New splitting criteria for decision trees in stationary data streams, IEEE Transactions on Neural Networks and Learning Systems, Vol. 29, No. 6, 2018, pp. 2516-2529.10.1109/TNNLS.2017.269820428500013Search in Google Scholar

[25] S. Kullback, R.A. Leibler, On information and sufficiency, The Annals of Mathematical Statistics. Vol. 22, No. 1, 1951, pp. 79-86.10.1214/aoms/1177729694Search in Google Scholar

[26] M.W.Y. Lam, One-match-ahead forecasting in two-team sports with stacked Bayesian regressions, Journal of Artificial Intelligence and Soft Computing Research, Vol. 8, No. 3, 2018, pp. 159-171.10.1515/jaiscr-2018-0011Search in Google Scholar

[27] K. Łapa, K. Cpałka, A. Przybył, K. Grzanek, Negative space-based population initialization algorithm (NSPIA), Artificial Intelligence and Soft Computing, ICAISC’2018, Lecture Notes in Computer Science, Vol. 10841, Springer, 2018, pp. 449-461.Search in Google Scholar

[28] K. Łapa, K. Cpałka, A. Przybył, Genetic programming algorithm for designing of control systems, Information Technology and Control, vol. 47, no. 5, 2018, pp. 668-683.10.5755/j01.itc.47.4.20795Search in Google Scholar

[29] D. Marr, E. Hildreth, Theory of edge detection, Proc. R. Soc. London, B-207, 1980), pp. 187-217.10.1098/rspb.1980.00206102765Search in Google Scholar

[30] L. Pietruczuk, L. Rutkowski, M. Jaworski, P. Duda, How to adjust an ensemble size in stream data mining?, Information Sciences, Elsevier Science Inc., Vol. 381, No. C, 2017, pp. 46-54.10.1016/j.ins.2016.10.028Search in Google Scholar

[31] W.K. Pratt, Digital Image Processing, 4th Edition, John Wiley Inc., New York, 2007.10.1002/0470097434Search in Google Scholar

[32] P. Qiu, Nonparametric estimation of jump surface, The Indian Journal of Statistics, Series A, Vol. 59, No. 2, 1997, pp. 268-294.Search in Google Scholar

[33] P. Qiu, Jump surface estimation, edge detection, and image restoration, Journal of the American Statistical Association, No. 102, 2007, pp. 745-756.10.1198/016214507000000301Search in Google Scholar

[34] E. Rafajłowicz, R. Schwabe, Halton and Hammersley sequences in multivariate nonparametric regression, Statistics and Probability Letters, Vol. 76, No. 8, 2006, pp. 803-812.10.1016/j.spl.2005.10.014Search in Google Scholar

[35] W. Rafajłowicz, Nonparametric estimation of continuously parametrized families of probability density functions – Computational aspects, Preprint of the Department of Engineering Informatics, Wrocław University of Science and Technology, Wrocław, 2020.10.3390/a13070164Search in Google Scholar

[36] C.R. Rivero, J. Pucheta, S. Laboret, V. Sauchelli, D. Patino, Energy associated tuning method for short-term series forecasting by complete and incomplete datasets, Journal of Artificial Intelligence and Soft Computing Research, Vol. 7, No. 1, 2017, pp. 5-16.10.1515/jaiscr-2017-0001Search in Google Scholar

[37] L. Romani, M. Rossini, D. Schenone, Edge detection methods based on RBF interpolation, Journal of Computational and Applied Mathematics, Vol. 349, 2019, pp. 532-547.10.1016/j.cam.2018.08.006Search in Google Scholar

[38] L. Rutkowski, Application of multiple Fourier-series to identification of multivariable non-stationary systems, International Journal of Systems Science, Vol. 20, No. 10, 1989, pp. 1993-2002.10.1080/00207728908910279Search in Google Scholar

[39] L. Rutkowski, E. Rafajłowicz, On optimal global rate of convergence of some nonparametric identification procedures, IEEE Transactions on Automatic Control, Vol. 34, No. 10, 1989, pp. 1089-1091.10.1109/9.35283Search in Google Scholar

[40] L. Rutkowski, Identification of MISO nonlinear regressions in the presence of a wide class of disturbances, IEEE Transactions on Information Theory, Vol. 37, No. 1, 1991, pp. 214-216.10.1109/18.61144Search in Google Scholar

[41] L. Rutkowski, L. Pietruczuk, P. Duda, M. Jaworski, Decision trees for mining data streams based on the McDiarmid’s bound, IEEE Transactions on Knowledge and Data Engineering, Vol. 25, No. 6, 2013, pp. 1272-1279.10.1109/TKDE.2012.66Search in Google Scholar

[42] L. Rutkowski, M. Jaworski, L. Pietruczuk, P. Duda, Decision trees for mining data streams based on the Gaussian approximation, IEEE Transactions on Knowledge and Data Engineering, Vol. 26, No. 1, 2014, pp. 108-119.10.1109/TKDE.2013.34Search in Google Scholar

[43] L. Rutkowski, M. Jaworski, L. Pietruczuk, P. Duda, The CART decision tree for mining data streams, Information Sciences, Vol. 266, 2014, pp. 1-15.10.1016/j.ins.2013.12.060Search in Google Scholar

[44] L. Rutkowski, M. Jaworski, L. Pietruczuk, P. Duda, A new method for data stream mining based on the misclassification error, IEEE Transactions on Neural Networks and Learning Systems, Vol. 26, No. 5, 2015, pp. 1048-1059.10.1109/TNNLS.2014.233355725051560Search in Google Scholar

[45] T. Rutkowski, J. Romanowski, P. Woldan, P. Staszewski, R. Nielek, L. Rutkowski, A content-based recommendation system using neuro-fuzzy approach, International Conference on Fuzzy Systems: FUZZ-IEEE, 2018, pp. 1-8.10.1109/FUZZ-IEEE.2018.8491543Search in Google Scholar

[46] T. Rutkowski, J. Romanowski, P. Woldan, P. Staszewski, R. Nielek, Towards interpretability of the movie recommender based on a neuro-fuzzy approach, Lectures Notes in Artificial Intelligence, ICAISC’2018, Vol. 10842, Springer, 2018, pp. 752-762.Search in Google Scholar

[47] L. Rutkowski, M. Jaworski, P. Duda, Stream Data Mining: Algorithms and Their Probabilistic Properties, Springer, 2019.10.1007/978-3-030-13962-9Search in Google Scholar

[48] S. Singh, R. Singh, Comparison of various edge detection techniques, in: 2nd International Conference on Computing for Sustainable Global Development, 2015, pp. 393-396.Search in Google Scholar

[49] T. Tezuka, Ch. Claramunt, Kernel analysis for estimating the connectivity of a network with event sequences, Journal of Artificial Intelligence and Soft Computing Research, Vol. 7, No. 1, 2017, pp. 17-31.10.1515/jaiscr-2017-0002Search in Google Scholar

[50] Y.G. Yatracos, Rates of convergence of minimum distance estimators and Kolmogorov’s entropy. The Annals of Statistics, Vol. 13, 1985, pp. 768-774.10.1214/aos/1176349553Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo