1. bookVolumen 4 (2014): Edición 1 (January 2014)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Particle Swarm Optimization Based Fuzzy Clustering Approach to Identify Optimal Number of Clusters

Publicado en línea: 30 Dec 2014
Volumen & Edición: Volumen 4 (2014) - Edición 1 (January 2014)
Páginas: 43 - 56
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] H. A. Edelstein, Introduction to data mining and knowledge discovery (3rd ed), Potomac, MD: Two Crows Corp. 1999.Search in Google Scholar

[2] B. Mirkin, Clustering: A Data Recovery Approach, Second Edition (Chapman & Hall/CRC Computer Science & Data Analysis).Search in Google Scholar

[3] R. B. Cattell, The description of personality: Basic traits resolved into clusters, Journal of Abnormal and Social Psychology, 38, 476-506,1943.10.1037/h0054116Search in Google Scholar

[4] S. Theodoridis, and K. Koutroubas, Pattern Recognition, Academic Press, 1999.Search in Google Scholar

[5] T. N. Pappas, An adaptive clustering algorithm for image segmentation, IEEE Trans. Signal process, vol. 40, pp.901-914, 199210.1109/78.127962Search in Google Scholar

[6] A. Likas, N. Vlassis, and J. Verbeek, The global k-means clustering algorithm (Technical Report), Computer Science Institute, University of Amsterdam, The Netherlands. ISA-UVA-01-02. 2001.Search in Google Scholar

[7] V. P. Guerrero-Bote, et al., Comparison of neural models for document clustering, Int. Journal of Approximate Reasoning, vol. 34, pp.287-305, 2003.10.1016/j.ijar.2003.07.012Search in Google Scholar

[8] G. L. Carl, A fuzzy clustering and fuzzy merging algorithm, Technical Report, CS-UNR-101, 1999.Search in Google Scholar

[9] L. A. Zadeh, Fuzzy sets, Information and Control, Vol. 8, pp. 338-353, 1965.10.1016/S0019-9958(65)90241-XSearch in Google Scholar

[10] R. Babuska, Fuzzy Modelling for Control, Kluwer Academic, USA, 1998.Search in Google Scholar

[11] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, ISBN 0-306-40671-3, 1981.10.1007/978-1-4757-0450-1Search in Google Scholar

[12] J. C. Dunn, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics 3: 32-57, 1973.10.1080/01969727308546046Search in Google Scholar

[13] I. Gath and A. B. Geva, Unsupervised optimal fuzzy clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol 11(7), pp 773-781, 1989.10.1109/34.192473Search in Google Scholar

[14] J. C. Bezdek, C. Coray, R. Gunderson and J.Watson, Detection and characterization of cluster substructure i. linear structure: Fuzzy c-lines, SIAM Journal on Applied Mathematics, 40(2), 339-357.10.1137/0140029Search in Google Scholar

[15] J. Yu, and M. S Yang, A generalized fuzzy clustering regularization model with optimality tests and model complexity analysis, Fuzzy Systems, IEEE Transactions on 15.5 (2007): 904-915.10.1109/TFUZZ.2006.889957Search in Google Scholar

[16] Y. T. Kao, E. Zahara, I. W. Kao, A hybridized approach to data clustering, Expert Systems with Applications 34 (3), 1754-1762, 2008.10.1016/j.eswa.2007.01.028Search in Google Scholar

[17] D. N. Cao, J. C. Krzysztof, GAKREM: a novel hybrid clustering algorithm, Information Sciences 178, 4205-4227, 2008.10.1016/j.ins.2008.07.016Search in Google Scholar

[18] K. R. Zalik, An efficient k-means clustering algorithm, Pattern Recognition Letters 29, 1385-1391, 2008.10.1016/j.patrec.2008.02.014Search in Google Scholar

[19] K. Krishna, Murty, Genetic k-means algorithm, IEEE Transactions of System Man Cybernetics Part BCybernetics 29, 433-439, 1999.10.1109/3477.764879Search in Google Scholar

[20] U. Mualik, S. Bandyopadhyay, Genetic algorithm-based clustering technique, Pattern Recognition 33, 1455-1465, 2000.10.1016/S0031-3203(99)00137-5Search in Google Scholar

[21] M. Laszlo, S. Mukherjee, A genetic algorithm that exchanges neighboring centers for k-means clustering, Pattern Recognition Letters 28 (16), 2359-2366, 2007.10.1016/j.patrec.2007.08.006Search in Google Scholar

[22] P. S. Shelokar, V. K. Jayaraman, B. D. Kulkarni, An ant colony approach for clustering, Analytica Chimica Acta 509 (2), 187-195, 2004.10.1016/j.aca.2003.12.032Search in Google Scholar

[23] S. A. Ludwig, Clonal Selection based Fuzzy C-Means Algorithm for Clustering, Proceedings of Genetic and Evolutionary Computation Conference (ACM GECCO), Vancouver, BC, Canada, July 2014.10.1145/2576768.2598270Search in Google Scholar

[24] T. A. Runkler, and C. Katz. Fuzzy clustering by particle swarm optimization, Fuzzy Systems, 2006 IEEE International Conference on. IEEE, 2006.10.1109/FUZZY.2006.1681773Search in Google Scholar

[25] H. C. Liu, J. M. Yih, D. B Wu, S. W. Liu, Fuzzy Cmean clustering algorithms based on Picard iteration and particle swarm optimization, Education Technology and Training, 2008. and 2008 International Workshop on Geoscience and Remote Sensing. ETT and GRS 2008. International Workshop on. Vol. 2. IEEE, 2008.10.1109/ETTandGRS.2008.375Search in Google Scholar

[26] B. J. Zhao, An ant colony clustering algorithm, Machine Learning and Cybernetics, 2007 International Conference on. Vol. 7. IEEE, 2007.10.1109/ICMLC.2007.4370833Search in Google Scholar

[27] G. Gan, J.Wu, and Z. Yang, A genetic fuzzy k-Modes algorithm for clustering categorical data, Expert Systems with Applications 36.2 (2009): 1615-1620.10.1016/j.eswa.2007.11.045Search in Google Scholar

[28] F. Yang, T. Sun, and C. Zhang, An efficient hybrid data clustering method based on K-harmonic means and Particle Swarm Optimization, Expert Systems with Applications 36.6 (2009): 9847-9852.10.1016/j.eswa.2009.02.003Search in Google Scholar

[29] T. Niknam, B. Amiri, An efficient hybrid approach based on PSO, ACO and k-means for cluster analysis, Applied Soft Computing, 10(1), 183-197.10.1016/j.asoc.2009.07.001Search in Google Scholar

[30] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, and M. Valdez, Optimal design of fuzzy classification systems using PSO with dynamic parameter adaptation through fuzzy logic, Expert Systems with Applications 40, no. 8 (2013): 3196-3206.10.1016/j.eswa.2012.12.033Search in Google Scholar

[31] L. Y. Chuang, C. J. Hsiao, and C. H. Yang, Chaotic particle swarm optimization for data clustering, Expert systems with Applications 38.12 (2011): 14555-14563.10.1016/j.eswa.2011.05.027Search in Google Scholar

[32] H. Izakian, and A. Abraham, Fuzzy C-means and fuzzy swarm for fuzzy clustering problem, Expert Systems with Applications 38.3 (2011): 1835-1838.10.1016/j.eswa.2010.07.112Search in Google Scholar

[33] S. Das, A. Abraham, and A. Konar, Automatic kernel clustering with a multi-elitist particle swarm optimization algorithm, Pattern Recognition Letters, 29(5), 688-699, 2008.10.1016/j.patrec.2007.12.002Search in Google Scholar

[34] M. Chen and S. A. Ludwig, Fuzzy Clustering Using Automatic Particle Swarm Optimization, Proceedings of 2014 IEEE International Conference on Fuzzy Systems, Beijing, China, July 2014.10.1109/FUZZ-IEEE.2014.6891874Search in Google Scholar

[35] R. C. Eberhart and J. Kennedy, A New Optimizer using Particle Swarm Theory, In Proc. 6th Symp. Micro Machine and Human Science, Nagoya, Japan 1995, 29-43.Search in Google Scholar

[36] J. C. Bezdek, Cluster validity with fuzzy sets, (1973): 58-73.10.1080/01969727308546047Search in Google Scholar

[37] R. N. Dave, Validating fuzzy partitions obtained through c-shells clustering, Pattern Recognition Letters, 17(6), 613-623, 1996.10.1016/0167-8655(96)00026-8Search in Google Scholar

[38] Y. Fukuyama and M. Sugeno, A new method of choosing the number of clusters for the fuzzy c-means method, Proceeding of fifth fuzzy Syst. Sympo., pp.247-250, 1989.Search in Google Scholar

[39] X. L. Xie, and G. Beni, A validity measure for fuzzy clustering. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 13(8), 841-847, 1991.10.1109/34.85677Search in Google Scholar

[40] N. R. Pal, and J. C. Bezdek, On cluster validity for the fuzzy c-means model, Fuzzy Systems, IEEE Transactions on, 3(3), 370-379, 1995.10.1109/91.413225Search in Google Scholar

[41] K. L. Wu, and M. S. Yang, A cluster validity index for fuzzy clustering, Pattern Recognition Letters, 26(9), 1275-1291, 2005.10.1016/j.patrec.2004.11.022Search in Google Scholar

[42] A. Strehl, Relationship-based clustering and cluster ensembles for high-dimensional data mining, 2002.Search in Google Scholar

[43] W. Pedrycz and J. V. de Oliveira, A development of fuzzy encoding and decoding through fuzzy clustering, IEEE Trans. Instrum. Meas., vol. 57, no. 4, pp. 829?837, Apr. 2008.10.1109/TIM.2007.913809Search in Google Scholar

[44] A. Frank & A. Asuncion, UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science, 2010.Search in Google Scholar

[45] B. Balasko, J. Abonyi, and B. Feil. Fuzzy clustering and data analysis toolbox, Department of Process Engineering, University of Veszprem, Veszprem, 2005.Search in Google Scholar

[46] J. MacQueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, 281-297, University of California Press, Berkeley, Calif., 1967.Search in Google Scholar

[47] L. Kaufman and P.J. Rousseeuw, Clustering by means of Medoids, in Statistical Data Analysis Based on the L1 Norm and Related Methods, edited by Y. Dodge, North- Holland, 405-416, 1987 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo