1. bookVolumen 3 (2013): Edición 4 (October 2013)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Application of Artificial Neural Network and Genetic Algorithm to Healthcarewaste Prediction

Publicado en línea: 30 Dec 2014
Volumen & Edición: Volumen 3 (2013) - Edición 4 (October 2013)
Páginas: 243 - 250
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] World Health Organization, Research for Universal Health Coverage, WHO Publications, 2013.Search in Google Scholar

[2] L. F. Mohamed, S. A. Ebrahim, and A. A. Al- Thukair, Hazardous Halthcare Waste Management in the Kingdom of Bahrain, Waste Management, vol. 29, no. 8, 2009, pp. 2404-2409.10.1016/j.wasman.2009.02.015Search in Google Scholar

[3] W. Rutala, R. Odette, and G. Samsa, Management of Infectious Waste by US Hospitals, The Journal of the American Medical Association (JAMA), vol. 262, 1989, no. 12, pp 22-29.10.1001/jama.1989.03430120089027Search in Google Scholar

[4] S. Altin, A. Altin, B. Elevil, and O. Cerit, ”Determination of Hospital Waste Composition and Disposal Methods: a Case Study,” Polish Journal of Environmental Studies, vol. 12, no. 2, 2003, p. 251-255.Search in Google Scholar

[5] TERI Energy Data Directory and Yearbook 2007, The Energy and Resources Institute, 2007.Search in Google Scholar

[6] U.S. Congress Office of Technology Assessment, Issues in Medical Waste Management, OTA publications, Washington, DC, 1988.Search in Google Scholar

[7] H. Burke, P. Goodman, D. Rosen, D. Henson, J. Weinstein, F. Harrell, J. Marks, D. Winchester, and D. Bostwick, Arti?cial Neural Networks Improve the Accuracy of Cancer Survival Prediction, Cancer, vol. 79, no. 4, 1997, pp. 857-862.10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-YSearch in Google Scholar

[8] M. Adya and F. Collopy, How Effective are Neural Networks at Forecasting and Prediction, Journal of Forecasting, vol. 17, no. 5-6, 1998, pp. 481-495.10.1002/(SICI)1099-131X(1998090)17:5/6<481::AID-FOR709>3.0.CO;2-QSearch in Google Scholar

[9] Y. T. Chang, J. Lin, J. Shing Shieh, and M. F. Abbod, Optimization the InitialWeights of Artificial Neural Networks via Genetic Algorithm Applied to Hip Bone Fracture Prediction, Advances in Fuzzy Systems, vol. 2012, 2012.10.1155/2012/951247Search in Google Scholar

[10] M. Negnevitsky, Artificial Intelligence: A Guide to Intelligent Systems, 2nd Ed., Pearson Education, 2005.Search in Google Scholar

[11] G. Li, H. Alnuweiri, Y. Wu, and H. Li, Acceleration of Back Propagation through Initial Weight Pre-training with Delta Rule, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 1, pp. 580-585, San Fransisco, CA, 1993.Search in Google Scholar

[12] S. Li, J. Yuan, X. Yue, and J. Luo, The Binary- Weights Neural Network for Robot Control, in: Proceedings of the 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 765-770, Tokyo, Japan, 2010.Search in Google Scholar

[13] Y. Lee, S. H. Oh and M. W. Kim, The Effect of Initial Weights on Premature Saturation in Backpropagation Learning, in: Proceedings of the International Joint Conference on Neural Networks, vol. 1, 1991, pp. 765-770, Seattle, WA.Search in Google Scholar

[14] R. S. Sexton and J. N. D. Gupta, Comparative Evaluation of Genetic Algorithm and Backpropagation for Training Neural Networks, Information Sciences, vol. 129, no. 1-4, 2000, pp. 45-59.10.1016/S0020-0255(00)00068-2Search in Google Scholar

[15] D. J. Montana and L. Davis, Training Feedforward Neural Networks Using Genetic Algorithms, in: Proceedings of the 11th International Joint Conference on Artificial Intelligence, vol. 1, 1989, pp. 762-767.Search in Google Scholar

[16] A. Kattan, R. Abdullah and R. A. Salam, Training Feed-Forward Neural Networks Using a Parallel Genetic Algorithm with the Best Must Survive Strategy, in: Proceedings of the International Conference on Intelligent Systems, Modelling and Simulation (ISMS), pp. 96-99, Liverpool, UK, 2010.10.1109/ISMS.2010.29Search in Google Scholar

[17] J. A. Blackard and D. J. Dean, Comparative Accuracies of Arti?cial Neural Networks and Discriminant Analysis in Predicting Forest Cover Types from Cartographic Variables, Computers and Electronics in Agriculture, vol. 24, no. 3, 1999, pp. 131-151.10.1016/S0168-1699(99)00046-0Search in Google Scholar

[18] T. D. Gwiazda, Genetic Algorithms Reference: Crossover for Single Objective Numerical Optimization Problems, Lightning Source Inc., 2007.Search in Google Scholar

[19] N. M. Razali and J. Geraghty , Genetic Algorithm Performance with Different Selection Strategies in Solving TSP, in: Proceedings of the World Congress on Engineering, vol. 2, London, UK, 2011.Search in Google Scholar

[20] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison- Wesley, 1989.Search in Google Scholar

[21] S. Jahandideh, S. Jahandideh, E. Barzegari Asadabadi, M. Askarian, M. M. Movahedi, S. Hosseini, and M. Jahandideh, ”The Use of Artificial Neural Networks and Multiple Linear Regression to Predict Rate of Medical Waste Generation,” Waste Management, vol. 29, no. 11, 2009, pp. 2874-2879,.10.1016/j.wasman.2009.06.027Search in Google Scholar

[22] D. Venkatesan, K. Kannan, and R. Saravanan, ”A Genetic Algorithm-based Artificial Neural Network Model for the Optimization of Machining Processes,” Neural Computing and Applications, vol. 18, no. 2, 2009, pp. 135-140. 10.1007/s00521-007-0166-ySearch in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo