Acceso abierto

Pulse Shape Discrimination of Neutrons and Gamma Rays Using Kohonen Artificial Neural Networks

,  y   
30 dic 2014

Cite
Descargar portada

The potential of two Kohonen artificial neural networks I ANNs) - linear vector quantisa - tion (LVQ) and the self organising map (SOM) - is explored for pulse shape discrimination (PSD), i.e. for distinguishing between neutrons (n's) and gamma rays (γ’s). The effect that la) the energy level, and lb) the relative- of the training and lest sets, have on iden- tification accuracy is also evaluated on the given PSD datasel The two Kohonen ANNs demonstrate compfcmentary discrimination ability on the training and test sets: while the LVQ is consistently mote accurate on classifying the training set. the SOM exhibits higher n/γ identification rales when classifying new paltms regardless of the proportion of training and test set patterns at the different energy levels: the average tint: for decision making equals 100 /e in the cax of the LVQ and 450 μs in the case of the SOM.

Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Informática, Inteligencia artificial, Bases de datos y minería de datos