1. bookVolumen 3 (2013): Edición 1 (January 2013)
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Biologically Inspired Feature Detection Using Cascaded Correlations of off and on Channels

Publicado en línea: 30 Dec 2014
Volumen & Edición: Volumen 3 (2013) - Edición 1 (January 2013)
Páginas: 5 - 14
Detalles de la revista
License
Formato
Revista
eISSN
2449-6499
Primera edición
30 Dec 2014
Calendario de la edición
4 veces al año
Idiomas
Inglés

[1] A. Borst, and T. Euler, “Seeing things in motion: Models, circuits, and mechanisms,” Neuron, vol. 71, pp. 974-994, 2011.10.1016/j.neuron.2011.08.031Search in Google Scholar

[2] N. Franceschini, J.M. Pichon, C. Blanes, and J.M. Brady, “From insect vision to robot vision [and discussion],” Philos. T. R. Soc. Lon. B vol. 337, pp. 283-294, 1992.10.1098/rstb.1992.0106Search in Google Scholar

[3] M.V. Srinivasan, et al., “Robot navigation inspired by principles of insect vision,” Robot. Auton. Syst. vol. 26, pp. 203-216, 1999.10.1016/S0921-8890(98)00069-4Search in Google Scholar

[4] P.S. Corbet, Dragonflies: Behavior and Ecology of Odonata, Ithaca: Cornell Univ Press, 1999Search in Google Scholar

[5] S.D. Wiederman and D.C O’Carroll, “Selective attention in an insect visual neuron” Curr Biol, Vol 23, pp156-161, 201310.1016/j.cub.2012.11.04823260469Search in Google Scholar

[6] S.D. Wiederman, P.A. Shoemaker, and D.C O’Carroll, “A model for the detection of moving targets in visual clutter inspired by insect physiology” PLoS ONE vol. 3 pp. e2784, 2008.10.1371/journal.pone.0002784246473118665213Search in Google Scholar

[7] S.D. Wiederman, S.D. Wiederman, R.S.A. Brinkworth and D.C. O’Carroll “Bio-inspired small target discrimination in high dynamic range natural scenes” 3rd International Conference on Bio-Inspired Computing: Theories and Applications. pp 109-116, 200810.1109/BICTA.2008.4656712Search in Google Scholar

[8] S.D. Wiederman, R.S.A. Brinkworth and D.C. O’Carroll, “Performance of a bio-inspired model for the robust detection of moving targets in high dynamic range natural scenes,” J. Comput. Theor. Nanos. vol. 7, pp. 911-920, 2010.10.1166/jctn.2010.1438Search in Google Scholar

[9] D. O’Carroll, “Feature-detecting neurons in dragonflies,” Nature vol. 362, pp. 541-543,1993.10.1038/362541a0Search in Google Scholar

[10] K. Nordstrm, D.M. Bolzon and D.C. O’Carroll. “Spatial facilitation by a high-performance dragonfly target-detecting neuron,” Biol. Lett. vol. 7, pp. 588-592, 2011.10.1098/rsbl.2010.1152313021521270026Search in Google Scholar

[11] B. Hassenstein and W. Reichardt, “Analyse der zeit-, reihenfolgen- und vorzeichenauswertung bei der bewegungsperzeption des rsselkfers Chlorophanus,” Z. Naturf., vol. 11b, pp. 513-524, 1956.10.1515/znb-1956-9-1004Search in Google Scholar

[12] H.G. Krapp, and R. Hengstenberg, “Estimation of self-motion by optic flow processing in single visual interneurons,” Nature, vol. 384, pp. 463-466, 1996.10.1038/384463a08945473Search in Google Scholar

[13] B. R. H. Geurten, K. Nordstrm, J. D. H. Sprayberry, D.M. Bolzon, and D.C. O’Carroll, “Neural mechanisms underlying target detection in a dragonfly centrifugal neuron,” J. Exp. Biol., vol. 210, pp. 3277-3284, 2007.Search in Google Scholar

[14] K. Nordstrm, P.D. Barnett, and D.C. O Carroll, “Insect detection of small targets moving in visual clutter,” PLoS Biol. vol. 4, pp. 378-386, 2006.10.1371/journal.pbio.0040054136009816448249Search in Google Scholar

[15] K. Nordstrm, and D.C. O’Carroll, “Feature detection and the hypercomplex property in insects,” Trends Neurosci. 32:383-391, 2009.10.1016/j.tins.2009.03.00419541374Search in Google Scholar

[16] P.D. Barnett, K. Nordstrm, and D.C. O’Carroll, “Retinotopic organization of small-field-targetdetecting neurons in the insect visual system,” Curr. Biol. vol. 17, pp. 569-578, 2007.10.1016/j.cub.2007.02.03917363248Search in Google Scholar

[17] R. Dror, D.C. O’Carroll, S.B. Laughlin, “The role of natural image statistics in biological motion estimation”. Lect Notes Comput Sc, vol. 1811, pp 492-501, 200010.1007/3-540-45482-9_50Search in Google Scholar

[18] S.D. Wiederman, P.A. Shoemaker & D.C. O’Carroll, “Biologically inspired small target detection mechanisms” IEEE Proc of the 3rd International Conference on Intelligent Sensors, Sensor Networks and Information (ISSNIP) pp. 269-273, 2007.10.1109/ISSNIP.2007.4496855Search in Google Scholar

[19] D. Osorio, “Mechanisms of early visual processing in the medulla of the locust optic lobe - How self-inhibition, spatial-pooling, and signal rectification contribute to the properties of transient cells”. Visual Neurosci. vol. 7, pp. 345-3, 1991.10.1017/S0952523800004831Search in Google Scholar

[20] N. Jansonius, and J. Hateren, “Fast temporal adaptation of on-off units in the first optic chiasm of the blowfly,” J. Comp. Physiol. A vol. 168, pp. 631-637, 1991.10.1007/BF002243531920162Search in Google Scholar

[21] D.M. Bolzon, K. Nordstrom, D.C. O’Carroll “Local and large-range inhibition in feature detection” J Neurosci vol. 29 pp 14143-14150 200910.1523/JNEUROSCI.2857-09.2009666507519906963Search in Google Scholar

[22] S.D. Wiederman SD and D.C. O’Carroll, “Discrimination of features in natural scenes by a dragonfly neuron,” J. Neurosci. vol. 31, pp. 7141-7144, 2011.Search in Google Scholar

[23] J. Zanker, “Modelling human motion perception. II. Beyond Fourier motion stimuli,” Naturwissenschaften vol. 81, pp. 200-209, 1994.10.1007/BF011385448022499Search in Google Scholar

[24] J.R. Dunbier, S.D. Wiederman, P.A. Shoemaker, and D.C. O’Carroll, “Modelling the temporal response properties of an insect small target motion detector”, Proc. 7th Int. Conf. on Intelligent Sensors, Sensor Networks and Information Processing, pp. 125-130, 2011.10.1109/ISSNIP.2011.6146600Search in Google Scholar

[25] J.R. Dunbier, S.D. Wiederman, P.A. Shoemaker and D.C. O’Carroll, “Facilitation of dragonfly target-detecting neurons by slow moving features on continuous paths,” Front. Neural Circuits. vol. 6, pp. 79, 2012.10.3389/fncir.2012.00079Search in Google Scholar

[26] S.D. Wiederman, D.C. O’Carroll, “Biomimetic Target Detection: modeling 2nd order correlation of OFF and ON channels”. Proc. of the IEEE, Symposium Series on Computational Intelligence for Multimedia, Signal and Vision Processing, Singapore (in press).Search in Google Scholar

[27] K. Nordstrm, and D.C. O’Carroll, “Small object detection neurons in female hoverflies,” P. Roy. Soc. B-Biol. Sci. vol. 273, pp.1211-1216, 2006.Search in Google Scholar

[28] S.D. Wiederman, R.S.A. Brinkworth and D.C. O’Carroll, “Bio-inspired target detection in natural scenes: optimal thresholds and ego-motion,” Proc. of the SPIE, Biosensing, vol. 7035, pp. 70350Z, 2008.Search in Google Scholar

[29] H. Eichner, M. Joesch, B. Schnell, D.F. Reiff, and A. Borst “Internal structure of the fly elementary motion detector,” Neuron vol. 70, pp. 1155-1164, 2011.Search in Google Scholar

[30] R.A. Harris, D.C. O’Carroll and S.B. Laughlin, “Contrast gain reduction in fly motion adaptation” Neuron, vol 28 pp 595. 200010.1016/S0896-6273(00)00136-7Search in Google Scholar

[31] J.C. Theobald, B.J. Duistermars, D.L. Ringach and M.A. Frye, “Flies see second-order ?motion,” Curr. Biol. vol. 18, pp. R464-R465, 2008.10.1016/j.cub.2008.03.05018522814Search in Google Scholar

[32] E. L. Mah, R. S. Brinkworth, and D. C. O’Carroll, ”An elaborated electronic prototype of a biological photoreceptor,” Biol Cybern vol. 98, pp. 357-369, 2008.10.1007/s00422-008-0222-418327606Search in Google Scholar

[33] M. Juusola, R. O. Uusitalo, and M. Weckstrom, ”Transfer of graded potentials at the photoreceptor interneuron synapse,” J Gen Physiol vol. 105, pp. 117-148, 1995.10.1085/jgp.105.1.11722169277537323Search in Google Scholar

[34] A. C. James, ”Nonlinear operator network models of processing in the fly lamina,” in Nonlinear Vision, N. B, Ed. Boca Raton, FL: CRC, 1992, pp. 39-74.10.1201/9781351075060-2Search in Google Scholar

[35] M. V. Srinivasan and R. G. Guy, ”Spectral properties of movement perception in the dronefly Eristalis,” J Comp Physiol A vol. 166, pp. 287-295, 1990.10.1007/BF00204803Search in Google Scholar

[36] D. G. Stavenga, ”Angular and spectral sensitivity of fly photoreceptors. I. Integrated facet lens and rhabdomere optics,” J Comp Physiol A vol. 189, pp. 1-17, 2003.10.1007/s00359-002-0370-212548425Search in Google Scholar

[37] A. D. Straw, E. J. Warrant, and D. C. O’Carroll, ”A ‘bright zone’ in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity,” J Exp Biol vol. 209, pp. 4339-4354, 2006.Search in Google Scholar

[38] J. H. van Hateren and H. P. Snippe, ”Information theoretical evaluation of parametric models of gain control in blowfly photoreceptor cells,” Vision Res vol. 41, pp. 1851-1865, 2001.Search in Google Scholar

[39] R.S.A. Brinkworth and D. C. O’Carroll, ” Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology” PLoS Comput Biol vol 5, (11), e1000555. doi:10.1371/journal.pcbi.1000555, 2009.10.1371/journal.pcbi.1000555276664119893631Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo