Cite

1. World Health Organization. Antibiotic resistance. Fact sheets [updated 17 Nov 2021]. Available: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance Search in Google Scholar

2. Foxman B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 2010;7, 653-58.10.1038/nrurol.2010.190 Search in Google Scholar

3. Wagenlehner F.M., Bartoletti R., Cek M., et al. Antibiotic stewardship: a call for action by the urologic community. Eur Urol. 2013;64(3): 358–360. 10.1016/j.eururo.2013.05.044.10.1016/j.eururo.2013.05.044 Search in Google Scholar

4. Stapleton A. E., Wagenlehner F. M. E., Mulgirigama A., et al. Escherichia coli resistance to fluoroquinolones in community-acquired uncomplicated urinary tract infection in women: a systematic review. Antimicrob. Agents Chemother. 2020;64, e00862-20. Search in Google Scholar

5. Edelsberg J., Weycker D, Barron R., et al. Prevalence of antibiotic resistance in US hospitals. Diagn. Microbiol. Infect. Dis. 2014;78, 255–262. Search in Google Scholar

6. Butler D., Ambite I., Wan M.L.Y. et al. Immunomodulation therapy offers new molecular strategies to treat UTI. Nat Rev Uro. 2022; 19, 419–437. Search in Google Scholar

7. Foxman B., Barlow R., D’Arcy H., Gillespie B., et al. Urinary tract infection: self-reported incidence and associated costs. Ann Epidemiol. 2000;10(8): 509–515.10.1016/S1047-2797(00)00072-7 Search in Google Scholar

8. Kumar S., Dave A., Wolf B., et al. Urinary tract infections. Dis Mon. 2015;61(2): 45–59.10.1016/j.disamonth.2014.12.00225732782 Search in Google Scholar

9. Ambite I., Puthia M., Nagy K., et al. Molecular Basis of Acute Cystitis Reveals Susceptibility Genes and Immunotherapeutic Targets. PLoS Pathog. 2016 Oct 12;12(10):e1005848.10.1371/journal.ppat.1005848506133327732661 Search in Google Scholar

10. Rydstrom G. The molecular basis of acute cystitis; IL-1beta and inflammasome dysregulation. At Molecular UTI Conference (Urinary Tract Infection; molecular advances and novel therapies); 2014; Malmö, Sweden accesed online 16 Aug 2022. Search in Google Scholar

11. Kumar H., Kawai T., Akira S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011;30, 16–34. Search in Google Scholar

12. Lacerda Mariano L., Ingersoll M. A. The immune response to infection in the bladder. Nat. Rev. Urol. 2020;17, 439–458. Search in Google Scholar

13. Nielubowicz GR.,Mobley HL. Host-pathogen interactions in urinary tract infection. Nat. Rev. Urol. 2010;7:430–441. Search in Google Scholar

14. Song J., Abraham SN. Innate and adaptive immune responses in the urinary tract. Eur J Clin Invest. 2008 Oct;38 Suppl 2:21-8.10.1111/j.1365-2362.2008.02005.x18826478 Search in Google Scholar

15. Ambite I., Butler D., Wan MLY., et al. Molecular determinants of disease severity in urinary tract infection. Nat Rev Urol. 2021 Aug;18(8):468-486.10.1038/s41585-021-00477-x820430234131331 Search in Google Scholar

16. Klein, R. D., Hultgren S. J. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 2020;18,211–26. Search in Google Scholar

17. Sundac L., Dando SJ., Sullivan MJ., et al. Protein-based profiling of the immune response to uropathogenic Escherichia coli in adult patients immediately following hospital admission for acute cystitis. Pathog Dis 2016;74 (6):ftw062.10.1093/femspd/ftw06227354295 Search in Google Scholar

18. Frendéus B., Godaly G., Hang L., et al. Interleukin-8 Receptor Deficiency Confers Susceptibility to Acute Pyelonephritis, J Exp Med 2000;192 (6): 881–890. Search in Google Scholar

19. Smithson A., Sarrias MR., Barcelo J., et al. Expression of interleukin-8 receptors (CXCR1 and CXCR2) in premenopausal women with recurrent urinary tract infections. Clin Diagn Lab Immunol. 2005 Dec;12(12): 1358-63.10.1128/CDLI.12.12.1358-1363.2005131708116339057 Search in Google Scholar

20. Dinarello CA. Interleukin-1beta and the autoinflamma-tory diseases. N Engl J Med. 2009;360(23): 2467–2470.10.1056/NEJMe081101419494224 Search in Google Scholar

21. Broz P., Dixit V.M. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16:407–420.10.1038/nri.2016.5827291964 Search in Google Scholar

22. Nagamatsu K., Hannan TJ., Guest RL., et al. Dysregulation of Escherichia coli alpha-hemolysin expression alters the course of acute and persistent urinary tract infection. Proc Natl Acad Sci USA. 2015;112, E871–880. Search in Google Scholar

23. Jung JH., Hong H.J., Gharderpour A., et al. Differential interleukin-1β induction by uropathogenic Escherichia coli correlates with its phylotype and serum C-reactive protein levels in Korean infants. Sci Rep. 2019;9, 15654. Search in Google Scholar

24. Schaale K., Peters KM., Murthy AM., et al. Strain- and host species-specific inflammasome activation, IL-1beta release, and cell death in macrophages infected with uropathogenic Escherichia coli. Mucosal Immunol. 2016;9, 124–136. Search in Google Scholar

25. Butler D.S.C., Ambite I., Nagy K. Neuroepithelial control of mucosal inflammation in acute cystitis. Sci Rep. 2018;8:11015.10.1038/s41598-018-28634-0605461030030504 Search in Google Scholar

26. Wullt B., Butler DSC., Ambite I., et al. Immunomodulation-A Molecular Solution to Treating Patients with Severe Bladder Pain Syndrome? Eur Urol Open Sci. 2021 Aug 6;31:49-58.10.1016/j.euros.2021.07.003838529334467240 Search in Google Scholar

27. Kamo I., Doi T. Effect of TAK-637, a tachykinin NK1-receptor antagonist, on lower urinary tract function in cats. Jpn J Pharmacol. 2001 Jun;86(2):165-9.10.1254/jjp.86.16511459118 Search in Google Scholar

28. Green SA., Alon A., Ianus J., et al. Efficacy and safety of a neurokinin-1 receptor antagonist in postmenopausal women with overactive bladder with urge urinary incontinence. J Urol. 2006 Dec;176(6 Pt 1):2535-40.10.1016/j.juro.2006.08.01817085151 Search in Google Scholar

29. Liu BK., Jin XW., Lu HZ., et al. The Effects of Neurokinin-1 Receptor Antagonist in an Experimental Autoimmune Cystitis Model Resembling Bladder Pain Syndrome/Interstitial Cystitis. Inflammation. 2019 Feb;42(1):246-254.10.1007/s10753-018-0888-230196377 Search in Google Scholar

30. Molina-Quiroz RC., Silva-Valenzuela C., Brewster J., et al. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli. mBio. 2018 Jan 9;9(1):e02144-17.10.1128/mBio.02144-17576074329317513 Search in Google Scholar

31. Nelius T., Winter C., Willingham J., et al. Immune-Based Treatment Strategies for Patients with Recurrent Urinary Tract Infections – Where Are We?. In: Nelius, T., editor. Recent Advances in the Field of Urinary Tract Infections [Internet]. London: IntechOpen; 2013 [cited 2022 Aug 16]. Available: https://www.intichopen.com10.5772/52913 Search in Google Scholar

32. Abraham SN., Miao Y. The nature of immune responses to urinary tract infections. Nat Rev Immunol. 2015 Oct;15(10):655-63.10.1038/nri3887492631326388331 Search in Google Scholar

33. Chakraborty A., Haque S.M., Dey D. et al. Detection of UTI Pathogen-Killing Properties of Coleus forskohlii from Tissue Cultured In vitro and Ex vitro Plants. Proc. Natl. Acad. Sci., India, Sect. B Biol. Sci. 2022;92, 157–169. Search in Google Scholar

34. Bishop BL., Duncan MJ., Song J., et al. Cyclic AMP-regulated exocytosis of Escherichia coli from infected bladder epithelial cells. Nat Med. 2007 May;13(5):625-30.10.1038/nm157217417648 Search in Google Scholar

35. Ching CB., Gupta S., Li B., et al. Interleukin-6/Stat3 signaling has an essential role in the host antimicrobial response to urinary tract infection. Kidney Int. 2018 Jun;93(6):1320-1329.10.1016/j.kint.2017.12.006596798629475562 Search in Google Scholar

36. Hunstad DA., Justice SS., Hung CS., et al. Suppression of bladder epithelial cytokine responses by uropathogenic Escherichia coli. Infect Immun. 2005;73:3999–4006.10.1128/IAI.73.7.3999-4006.2005116857115972487 Search in Google Scholar

37. Yun H, Xie F, Delzell E, et al. Comparative Risk of Hospitalized Infection Associated With Biologic Agents in Rheumatoid Arthritis Patients Enrolled in Medicare. Arthritis Rheumatol. 2016;68:56–66.10.1002/art.3939926315675 Search in Google Scholar

38. Godaly G., Proudfoot AE., Offord RE., et al. Role of epithelial interleukin-8 (IL-8) and neutrophil IL-8 receptor A in Escherichia coli-induced transuroepithelial neutrophil migration. Infect Immun. 1997 Aug;65(8):3451-6.10.1128/iai.65.8.3451-3456.19971754889234811 Search in Google Scholar

39. Godaly G., Hang L., Frendéus B., et al. Transepithelial neutrophil migration is CXCR1 dependent in vitro and is defective in IL-8 receptor knockout mice. J Immunol. 2000 Nov 1;165(9):5287-94.10.4049/jimmunol.165.9.528711046063 Search in Google Scholar

40. Hang L., Frendeus B., Godaly G., et al. Interleukin-8 receptor knockout mice have subepithelial neutrophil entrapment and renal scarring following acute pyelonephritis. J. Infect. Dis. 2000. 182:1738-1748.10.1086/31759911069247 Search in Google Scholar

eISSN:
1220-5818
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Internal Medicine, other, Cardiology, Gastroenterology, Pneumology