Acceso abierto

Quantifying neurophysiological mechanism through heart rate variability: the case of cognitive stress

,  y   
23 jun 2025

Cite
Descargar portada

Figure 1:

Neurophysiological mechanism of HRV under cognitive stress. HRV, heart rate variability.
Neurophysiological mechanism of HRV under cognitive stress. HRV, heart rate variability.

Figure 2:

Usual cardiac cycle (heartbeat) from MIT-BIH arrhythmia database (ECG 100 recordings).
Usual cardiac cycle (heartbeat) from MIT-BIH arrhythmia database (ECG 100 recordings).

Figure 3:

Signal collection and HRV analysis in three different domains (time, frequency, and non-linear). HRV, heart rate variability.
Signal collection and HRV analysis in three different domains (time, frequency, and non-linear). HRV, heart rate variability.

Figure 4:

Recurrence plot of the data analyzed.
Recurrence plot of the data analyzed.

Figure 5:

Ellipsoid fit applied on the dense region.
Ellipsoid fit applied on the dense region.

Figure 6:

False nearest neighbor test.
False nearest neighbor test.

The metrics considered in the non-linear domain and their values under stress and rest conditions

Metric References Meta analysis report Stress Rest



Weight Characteristics Mean Stdd Mean Stdd
D1(-) Vuksanović (2007) 0.5049 Very high 1 0.17 0.90 0.18
Melillo et al. (2011) 0.4942 Very low 1.04 0.45 1.43 0.17
D2(-) Schubert et al. (2009) 0.5413 Very low 3.3 0.34 3.42 0.29
Melillo et al. (2013) 0.4590 Very low 1.62 1.30 2.92 1.07
Melillo et al. (2011) - Low 0.74 0.12 0.76 0.19
En(0.2) (–) Melillo et al. (2011) - Very low 1 0.30 1.10 0.14
En(rchon) (–) Melillo et al. (2011) - Very low 1 0.25 1.17 0.12
En(rmax) (–) Melillo et al. (2013) - Low 1.06 0.18 1.15 0.14
LLE Vuksanović (2007) - High 0.05 0.018 0.05 0.017
Lmax (beats) Melillo et al. (2011) - Very low 213.30 137.12 285.90 111.32
Lmean (beats) Melillo et al. (2011) - Very high 14.90 6.82 11.07 2.47
RECdet (%) Melillo et al. (2011) - High 98.57 1.30 98.70 0.87
RECrate (%) Melillo et al. (2011) - Very high 42.30 12.80 33.49 6.30
SampEn (–) Vuksanović (2007) - Very low 1.72 0.05 1.80 0.03
SD1 (ms) Melillo et al. (2011) - Very low 0.03 0.02 0.04 0.02
SD2 (ms) Melillo et al. (2011) - Very low 0.06 0.02 0.09 0.04
ShnEn (–) Melillo et al. (2011) - Very high 3.46 0.40 3.18 0.24

The metrics considered in the time domain and their values under stress and rest conditions

Metric References Meta analysis report Stress Rest



Mean %-tile Characteristics Mean Stdd Mean Stdd
MeanRR Vuksanović (2007) 0.0033 Low 740.74 263.25 806.59 249.54
Tharion et al. (2009) 0.0117 Very low 777.49 114.38 867.36 114.12
Schubert et al. (2009) 0.0183 Low 686.47 240.82 808.67 206.25
Papousek et al. (2010) 0.0926 Very low 617.92 210.44 819.73 244.14
Lackner et al. (2011) 0.1287 Low 765.93 314.33 837.15 324.60
Taelman et al. (2011) 0.1997 Very low 755.44 134.52 863.54 147.12

RRStdd Tharion et al. (2009) 0.0894 Very low 52.42 21.51 74.32 25.21
Schubert et al. (2009) 0.0352 Very high 96.25 86.38 33.54 23.44
Taelman et al. (2011) 0.0376 Very low 35.27 16.22 46.38 19.49
Visnovcova et al. (2014) 0.5005 Very low 48.22 17.74 56.53 21.71

RRMmsds Li et al. (2009) 0.2685 Very low 55.44 29.22 68.51 37.42
Tharion et al. (2009) 0.0417 Low 49.92 31.07 74.03 39.65
Taelman et al. (2011) 0.5438 Very low 19.42 13.04 28.47 16.04

NN50p (%) Tharion et al. (2009) 0.2152 Very low 20.21 19.07 39.03 23.02
Taelman et al. (2011) 0.7842 Low 26.52 16.67 31.42 18.37
Sieciński (2019) 0.3229 Low 15.36 14.42 37.06 21.54

The metrics considered in the frequency domain and their values under stress and rest conditions

Metric References Meta analysis report Stress Rest



Mean %-tile Characteristics Mean Stdd Mean Stdd
LowF (ms2) Hjortskov et al. (2004) 8.52 Very low 1400 1030 1664 807.88
Vuksanović (2007) 15.68 Very high 608 458.12 454.90 382
Tharion et al. (2009) 5.75 Very low 1193 724.15 2155 2156
Papousek et al. (2010) 14.25 High 1645 986.91 997.30 600.10
Lackner et al. (2011) 10.16 High 1342 1205 813.17 650
Traina et al. (2011) 15.32 Very high 1245 312 512 115
Taelman et al. (2011) 14.82 Very low 468.10 460.20 869.53 641

HighF (ms2) Hjortskov et al. (2004) 5.42 Very low 1312 715 1775 1093
Vuksanović (2007) 11.44 Very low 445 1081 638.90 1340
Vuksanović (2007) 9.67 High 664.92 924.88 556.10 715
Tharion et al. (2009) 1.52 Very low 1695 2093 2891 2623
Li et al. (2009) 8.36 Very low 1202 1455 2002 2065
Li et al. (2009) 11.80 Very low 1072 1056 1675 1752
Papousek et al. (2010) 18.13 Low 667 402 1098 663
Traina et al. (2011) 17.88 Low 253.15 264.20 277.60 245
Taelman et al. (2011) 15.63 Very low 552 421 1001 785
Sieciński (2019) 15.07 High 1157.22 2545.10 889.20 1526.24

HighF/LowF Hjortskov et al. (2004) 14.92 High 2.12 1.08 1.15 0.75
Kofman et al. (2006) 20.19 High 1.61 1.02 1.12 0.68
Vuksanović (2007) 4.67 Low 1.06 4.12 1.08 3.11
Tharion et al. (2009) 12.76 High 1.32 0.78 1.40 1.78
Schubert et al. (2009) 19.85 High 1.23 1.20 1.48 1.11
Papousek et al. (2010) 23.10 High 1.14 0.63 0.01 0.76
Traina et al. (2011) 4.65 Very high 6.12 2.88 3.10 2.10
Sieciński (2019) 10.14 Very low 0.999 0.14 0.0005 0.0014

Different measures and definitions of the recurrence plot

Measure Definition
Recurrence rate/recurrence points percentage in an RP corresponding to the correlation sum RR=1M2i,j=1MRi,j RR = {1 \over {{M^2}}}\sum\limits_{i,j = 1}^M {{R_{i,j}}}
Recurrence points percentage forming diagonal lines RECdet=q=qminMqPq/q=1MqPq RE{C_{det}} = \mathop \sum \nolimits_{q = {q_{min }}}^M qP\left( q \right)/\mathop \sum \nolimits_{q = 1}^M qP\left( q \right)
Uncountable/the percentage of recurrence points which form vertical lines RECl=s=sminMsPs/s=1MsPs RE{C_l} = \mathop \sum \nolimits_{s = {s_{min }}}^M sP\left( s \right)/\mathop \sum \nolimits_{s = 1}^M sP\left( s \right)
The proportion among DET and RR RECrate=M2q=qminMqPq/q=1MqPq2 RE{C_{rate}} = {M^2}\mathop \sum \nolimits_{q = {q_{min }}}^M qP\left( q \right)/{\left( {\mathop \sum \nolimits_{q = 1}^M qP\left( q \right)} \right)^2}
Average length of the diagonal lines Qavg=q=qminMqPq/q=1MPq {Q_{avg}} = \mathop \sum \nolimits_{q = {q_{min }}}^M qP\left( q \right)/\mathop \sum \nolimits_{q = 1}^M P\left( q \right)
Average length of the vertical lines/trapping time TT=s=sminMsPs/s=sminMPs TT = \mathop \sum \nolimits_{s = {s_{min }}}^M sP\left( s \right)/\mathop \sum \nolimits_{s = {s_{min }}}^M P\left( s \right)
Length of the longest diagonal line Qm=maxqi;i=1,,Nq {Q_m} = {{max}}\left( {\left\{ {{q_i};i = 1, \cdots , \cdots {N_q}} \right\}} \right)
Length of the longest vertical line Sm=maxsi;i=1,,Ns {S_m} = {{max}}\left( {\left\{ {{s_i};i = 1, \cdots , \cdots {N_s}} \right\}} \right)
Divergence, related with the KS entropy of the system, i.e., with the sum of the positive Lyapunov exponents DIV=1/Qmax DIV = 1/{Q_{max }}
ShnEn of the probability distribution of the diagonal line lengths p(q) En=q=qminMPqlnPq {E_n} = - \mathop \sum \nolimits_{q = {q_{min }}}^M P\left( q \right)ln\left( {P\left( q \right)} \right)
The paling of the RR towards its edges RRtrend=i=1UiU2RRiRRi/i=1UiU22 {RR_{trend}} = \mathop \sum \nolimits_{i = 1}^U \left( {i - {U \over 2}} \right)\left( {{RR_i} - {RR_i}} \right)/\mathop \sum \nolimits_{i = 1}^U {\left( {i - {U \over 2}} \right)^2}
Idioma:
Inglés
Calendario de la edición:
1 veces al año
Temas de la revista:
Ingeniería, Introducciones y reseñas, Ingeniería, otros