Automatic detection of technical debt in large-scale java codebases: a multi-model deep learning methodology for enhanced software quality
, , , y
25 mar 2025
Acerca de este artículo
Categoría del artículo: Research Article
Publicado en línea: 25 mar 2025
Recibido: 10 ene 2025
DOI: https://doi.org/10.2478/ijssis-2025-0012
Palabras clave
© 2025 Dr. Pooja Bagane et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1:

Figure 2:

Comparison of validation metrics
LSTM | 0.003357 | 0.057947 |
GRU | 0.005403 | 0.073505 |
RF regressor | 0.006093 | 0.078061 |
GB regressor | 0.007900 | 0.08888 |