Acerca de este artículo
Categoría del artículo: Review
Publicado en línea: 06 mar 2024
DOI: https://doi.org/10.2478/ijssis-2024-0012
Palabras clave
© 2024 Tanmay Sinha Roy et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1:
![A typical recorded PCG signal [1]. PCG, phonocardiogram.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_001.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=c861f5ecc7c1ce185f563e65b914c348279477a6d55b47495e438283293d2d09&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 1(a):
![Various phases engaged in PCG analysis [2]. PCG, phonocardiogram.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_001a.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=d5ff0bd034bf5ad501b45b768d08b45656d25b292b190dec09792bfc68904f2f&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 1(b):
![Graphical representation of various steps involved in PCG signal classification [2, 14]. PCG, phonocardiogram.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_001b.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=1ce45100690b6f0f309a76e58364488155edcfdc5e672d9e6480417e64a7a7b0&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 2:

Figure 3(a):

Figure 3(b):

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10(a):

Figure 10(b):

Figure 11:

Figure 12:

Figure 13:
![PCG analysis of different types of Heart Sounds [41, 39, 49]. PCG, phonocardiogram.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_013.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=f83dcd3cfb4b44aae043d4bc79aea9c2275c1af1c15dc52ae9441246d2e41270&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 14(a):
![Different coefficients in DWT [121, 122]. DWT, discrete wavelet transform.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_014a.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=6a51eef3ddfee18592d720b5e4195da694e9f2fe0ab6d23267a3a81276a57822&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 14(b):
![Flow chart of DWT [121, 122]. DWT, discrete wavelet transform.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_014b.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=2837e25c1b11af11c7770fe0a077834d313d8ebc38460763275133da73be136a&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 15:
![Time-domain analysis of different Heart Sounds using wavelet transform [121, 122]. AR, aortic regurgitation; MS, mitral stenosis.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_015.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=191755636fdd03fdbab3efe287e0239f9bedb367e1e004266b06f0946bc8f7ad&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 16:

Figure 17(a,b):

Figure 17(c):

Figure 18:

Figure 19:

Figure 20:
![Convolution operation [131, 132].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_020.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=3055f1c5b77cfed550c5debcfd5ff1f95ad9bba3726ce3754541da2568232825&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 21:

Figure 22:
![Architecture of CNN model [137] for Heart Sound classification.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_022.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=19d6698d7c72464859508f8778ef4231570f0938e3acaa88816502ed16294402&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 23:
![PCG signal classification based on deep-learning models [138, 139]. PCG, phonocardiogram.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_023.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=a64b90d1a3332b1c6b08ef49badc8d6ae272bb2339d26e255db1e42f657320ed&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 24:
![Application of Heart Sound classification method adopted by a medical practitioner [140, 141].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_024.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=d2c4f7078968ea2c59a2da914b1923c385cb6c171f7a064b79894fdf95995b80&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 25:
![Study of machine-learning vs. deep-learning methods for cardiac sound classification [148, 149, 150].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_025.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=5c355d2f47b44818406ae2fdb1d755a83b032046845dfdf52242b3d3fa0dff65&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 26:

Figure 27:

Figure 28:

Figure 29:

Figure 30:

Figure 31:

Figure 32:

Figure 33:

Figure 34:

Figure 35:
![Study of all CNN-based deep-learning models [142, 143].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_035.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=0c687cc40c198878871753fc4d60b48946081af9b578a3e46fcd96f37ef1823a&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 36:
![Deep neural network based model architecture [144, 145].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_036.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=347c851dc05b1d29c30964dc7e099024951acc60eb174555b1d4ca5fad822377&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 37:
![Architecture of a machine-learning algorithm like Random Forest [146, 147].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/65ccbc5b3bc2d770e76b839c/j_ijssis-2024-0012_fig_037.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250930%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250930T214145Z&X-Amz-Expires=3600&X-Amz-Signature=2b163ffd9c9f0b0e36880f0daff110a6738f018bc5ee51333fcce7a2121a83b7&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Heart Sound frequencies found in various abnormal Heart Sounds_
|
||
---|---|---|
First Heart Sound | 100 | 200 |
Second Heart Sound | 50 | 250 |
AR | 60 | 380 |
PR | 90 | 150 |
AS | 100 | 450 |
PS | 150 | 400 |
ASD | 60 | 200 |
VSD | 50 | 180 |
MR | 60 | 400 |
TR | 90 | 400 |
MS | 45 | 90 |
TS | 90 | 400 |
MVP | 45 | 90 |
PDA | 90 | 140 |
Flow murmur | 85 | 300 |
Comparison of training and validation performance metrics of CNN-based deep-learning models_
|
||||
---|---|---|---|---|
LENET-5 | 0.4352 | 0.7089 | 0.4757 | 0.6799 |
Alex Net | 0.3476 | 0.7379 | 0.3837 | 0.7199 |
VGG16 | 0.2979 | 0.8102 | 0.3134 | 0.7978 |
VGG19 | 0.2692 | 0.8709 | 0.2899 | 0.8469 |
DENSENET121 | 0.2476 | 0.9087 | 0.2665 | 0.8876 |
Squeeze Network | 0.2097 | 0.9265 | 0.2098 | 0.8906 |
Mobile Network | 0.1576 | 0.9435 | 0.1376 | 0.9073 |
Inception Network | 0.0472 | 0.9843 | 0.0654 | 0.9863 |
Residual Network | 0.0432 | 0.9856 | 0.0533 | 0.9892 |
Xception Network | 0.0320 | 0.9951 | 0.0325 | 0.9926 |
A study of PCG signal and their gap analysis reported in the literature
[ |
Dewangan et al. | 2018 | Basic features used in the time domain only | Heart Sound analysis using the DWT method |
[ |
Thomas Schanze | 2017 | Biomedical heart signal analysis not using latest machine-learning and deep-learning methods | Singular value decomposition |
[ |
Othman and Khaleel | 2017 | Only time-domain analysis has been made | PCG signal analysis using Shannon Energy Envelop and DWT method |
[ |
Martinek et al. | 2017 | PCG signal analysis applicable to fetal heart only, not real-time human subjects | Adaptive filtering based fetal heart rate monitoring |
[ |
Abhijay Rao | 2017 | It is a survey paper only, not a research paper | Biomedical signal processing |
[ |
Sh-Hussain et al. | 2016 | Frequency domain and statistical domain features need to be analyzed | Heart Sound monitoring system using wavelet transformation |
[ |
Prasad and Kumar | 2015 | Real-time PCG signal analysis was not applied | Analysis of various DWT methods for feature extracted PCG signals |
[ |
Pan et al. | 2015 | Real-time analysis not done | Categorization of PCG signals using multimodal features |
[ |
Lubaib and Muneer | 2015 | More features need to be considered for this analysis | Using pattern recognition techniques |
[ |
Roy et al. | 2014 | No proper experimentation has been done | A survey on classification of PCG signals |
[ |
Mishra et al. | 2013 | It deals with PCG signal noise removal only, not classification | Denoising of Heart Sound signal using DWT |
[ |
Zhao et al. | 2013 | PCG signal/Heart Sound biometric | Marginal Spectrum Analysis |
[ |
Singh and Cheema | 2013 | Limited application of deep-learning algorithms has been used | Classification using Feature Extraction |
[ |
Safara et al. | 2013 | Only time-domain analysis has been made | Multi-level basis selection of wavelet |
[ |
Salleh et al. | 2012 | PCG signal analysis using Kalman filter, not using any standard deep-learning method | Heart Sound analysis: a Kalman filter-based approach |
[ |
Misal and Sinha | 2012 | It deals with PCG signal noise removal only, not classification | Denoising of PCG signal using DWT |
[ |
Kasturiwale | 2012 | Biomedical signal analysis, limited features. | Analysis using component extraction |
[ |
McNames and Aboy | 2008 | It deals with the modeling part of PCG signals, not the classification and analysis | Techniques, statistical modeling of PCG signals |
[ |
Ahmad et al. | 2009 | More feature extraction needs to be done for the PCG signal analysis | Classification of PCG signal using an Adaptive Fuzzy Inference System. |
[ |
Debbal and Bereksi-Reguig | 2006 | Time-domain analysis in time domain only | PCG signal analysis using the CWT |
[ |
Gupta et al. | 2005 | A real-time PCG signal analysis was not done | Segmentation and categorization of Heart Sound for analysis purpose. |
[ |
Muthuswamy | 2004 | It is a survey paper only, not a research paper | Biomedical signal analysis |
Comparison of performance metrics in various CNN-based deep-learning models_
|
||||||
---|---|---|---|---|---|---|
LeNet-5 | 68.97 | 69.75 | 67.44 | 66.68 | 1086 | 1135 |
Alex Net | 72.34 | 70.74 | 73.88 | 71.24 | 1233 | 1337 |
VGG16 | 74.08 | 75.29 | 75.08 | 75.13 | 1352 | 1011 |
VGG19 | 82.17 | 83.33 | 82.19 | 84.21 | 1343 | 947 |
DenseNet121 | 92.47 | 93.55 | 93.47 | 94.48 | 1201 | 937 |
Squeeze Network | 93.57 | 92.65 | 94.79 | 93.56 | 1098 | 1012 |
Mobile Network | 95.09 | 94.35 | 95.68 | 93.46 | 890 | 987 |
Inception Network | 96.96 | 98.17 | 98.96 | 97.02 | 710 | 974 |
Residual Network | 97.32 | 98.42 | 98.32 | 98.35 | 783 | 1056 |
Xception Network | 99.13 | 98.18 | 98.43 | 99.19 | 750 | 865 |
Efficient Network-B3 | 99.49 | 98.62 | 98.72 | 99.37 | 786 | 854 |
Different sensors used in real-time Heart Sound analysis methods_
Time | Electret condenser microphone | 1 | LMS-ANC |
Time | Electronic stethoscope | 1 | Single input ANC |
Time | Microphone | 1 | LMS-ALE, RLS-ALE |
Frequency | Electronic stethoscope with an electret microphone | 1 | DWT, Hilbert transform |
Frequency | Microphone | 1 | DWT, LMS-ALE, RLS-ALE |
Frequency | NM | NM | EMD |
A summary of CNN and RNN based methods used in PCG signal analysis [108, 109]_
1 | Maknickas and Maknickas 2017 [ |
2D-CNN | MFSC | No | RMSprop | N, A |
2 | Alafif et al. 2020 [ |
2D-CNN + transfer learning | MFCC | No | SGD | N, A |
3 | Deng et al. 2020 [ |
CNN + RNN | Improved MFCC | No | Adam | N, A |
4 | Abduh et al. 2019 [ |
2D-DNN | MFSC | No | Adam | N, A |
5 | Chen et al. 2018 [ |
2D-CNN | Wavelet transform + Hilbert–Huang features | No | Adam | N, M, EXT |
6 | Rubin et al. 2016 [ |
2D-CNN | MFCC | Yes | Adam | N, A |
7 | Nilanon et al. 2016 [ |
2D-CNN | Spectrograms | No | SGD | N, A |
8 | Dominguez-Morales et al. 2018 [ |
2D-CNN | Spectrograms | No | Adam | N, A |
9 | Bozkurt et al. 2018 [ |
2D-CNN | MFCC + MFSC | Yes | Adam | N, A |
10 | Chen et al. 2019 [ |
2D-CNN | MFSC | No | Adam | N, A |
11 | Cheng et al. 2019 [ |
2D-CNN | Spectrograms | No | Adam | N, A |
12 | Demir et al. 2019 [ |
2D-CNN | Spectrograms | No | Adam | N, M, EXT |
13 | Ryu et al. 2016 [ |
1D-CNN | 1D time-series signals | No | SGD | N, A |
14 | Xu et al. 2018 [ |
1D-CNN | 1D time-series signals | No | SGD | N, A |
15 | Xiao et al. 2020 [ |
1D-CNN | 1D time-series signals | No | SGD | N, A |
16 | Oh et al. 2020 [ |
1D-CNN WaveNet | 1D time-series signals | NO | Adam | N, AS, MS, MR, MVP |
17 | Khan et al. 2020 [ |
LSTM | MFCC | No | Adam | N, A |
18 | Yang et al. 2016 [ |
RNN. | 1D time-series signals | No | Adam | N, A |
19 | Raza et al. 2018 [ |
LSTM | 1D time-series signals | No | Adam | N, A |
20 | Tschannen et al. 2016 [ |
2D-CNN + SVM | Deep features | Yes | Adam | N, A |