Identification of glucose levels in urine based on classification using k -nearest neighbor algorithm method
, , , y
03 ago 2023
Acerca de este artículo
Categoría del artículo: Article
Publicado en línea: 03 ago 2023
Recibido: 15 ago 2022
DOI: https://doi.org/10.2478/ijssis-2023-0006
Palabras clave
© 2023 Anton Yudhana et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:

Glucose characterization
1. | Sample 1 | 0–0.5 | 0 | Slightly greenish blue and a bit cloudy | Normal |
2. | Sample 2 | 0.5–1 | 0.2 | Yellowish green | Positive 1 |
3. | Sample 3 | 1–1.5 | 0.3 | Greenish yellow | Positive 2 |
4. | Sample 4 | 2–3.5 | 0.4 | Slightly brownish orange | Positive 3 |
5. | Sample 5 | >3.5 | 1 | Slightly brownish brick red | Positive 4 |
Results of the data from the sensor
21.34 | 23.36 | 18.68 | 19.64 | 14.02 | 6.66 | Normal | |
14.93 | 13.53 | 24.27 | 21.48 | 19.23 | 6.53 | Positive 1 | |
12.19 | 10.07 | 22.63 | 24.14 | 21.87 | 9.05 | Positive 2 | |
11.12 | 8.21 | 16.97 | 21.91 | 26.02 | 15.74 | Positive 3 | |
13.68 | 9.93 | 22.58 | 20.77 | 22.58 | 10.43 | Positive 4 |