This work is licensed under the Creative Commons Attribution 4.0 International License.
Hoche R., Nicomachus, Nicomachi Geraseni Pythagorei Introductionis arithmeticae Libri II (Greek Ed.), Chapter XIII, Kessinger, USA, 1866.HocheR.Nicomachus, Nicomachi Geraseni Pythagorei Introductionis arithmeticae Libri II (Greek Ed.), Chapter XIIIKessingerUSA1866Search in Google Scholar
Caragiu M., Sequential Experiments with Primes, Springer, USA, 2017.CaragiuM.Sequential Experiments with PrimesSpringerUSA2017Search in Google Scholar
Stepney S., Euclid's proof that there are an infinite number of primes, https://www-users.cs.york.ac.uk/susan/cyc/p/primeprf.htm, Accessed: September 3, 2022.StepneyS.Euclid's proof that there are an infinite number of primeshttps://www-users.cs.york.ac.uk/susan/cyc/p/primeprf.htm, Accessed: September 3, 2022.Search in Google Scholar
Uselton S.C., A study of semiprime arithmetic sequences, (Honors Thesis), Belmont University, USA, 2022.UseltonS.C.A study of semiprime arithmetic sequences, (Honors Thesis),Belmont UniversityUSA2022Search in Google Scholar
Faber X., Granville A., Prime factors of dynamic sequences, Journal für Die Reine und Angewandte Mathematik, 661, 1–26, 2011.FaberX.GranvilleA.Prime factors of dynamic sequencesJournal für Die Reine und Angewandte Mathematik6611262011Search in Google Scholar
Numbers Aplenty, Semiprimes, https://www.numbersaplenty.com/set/semiprime/, Accessed: September 9, 2022.Numbers Aplenty, Semiprimeshttps://www.numbersaplenty.com/set/semiprime/, Accessed: September 9, 2022.Search in Google Scholar
Borne K., Abdenim O.H., 20 Best Prime Numbers Books of All Time, https://bookauthority.org/books/best-prime-numbers-books, Accessed: August 14, 2024.BorneK.AbdenimO.H.20 Best Prime Numbers Books of All Timehttps://bookauthority.org/books/best-prime-numbers-books, Accessed: August 14, 2024.Search in Google Scholar
Niven I., Zuckerman H.S., Montgomery H.L., An Introduction to the Theory of Numbers, John Wiley and Sons, USA, 1991.NivenI.ZuckermanH.S.MontgomeryH.L.An Introduction to the Theory of NumbersJohn Wiley and SonsUSA1991Search in Google Scholar
Hoffman P., The Man Who Loved Only Numbers: The Story of Paul Erdös and the Search for Mathematical Truth, Hyperison, USA, 1999.HoffmanP.The Man Who Loved Only Numbers: The Story of Paul Erdös and the Search for Mathematical TruthHyperisonUSA1999Search in Google Scholar
Granville A., Prime number patterns, The American Mathematical Monthly, 115(4), 279–296, 2008.GranvilleA.Prime number patternsThe American Mathematical Monthly11542792962008Search in Google Scholar
Granville G.A., Primes in intervals of bounded length, Bulletin of the American Mathematical Society, 52(2), 171–222, 2015.GranvilleG.A.Primes in intervals of bounded lengthBulletin of the American Mathematical Society5221712222015Search in Google Scholar
Baibekov S.N., Durmagambetov A.A., Infinite number of twin primes, Advances in Pure Mathematics, 6(13), 954–971, 2016.BaibekovS.N.DurmagambetovA.A.Infinite number of twin primesAdvances in Pure Mathematics6139549712016Search in Google Scholar
Weisstein E.W., Twin primes, https://mathworld.wolfram.com/TwinPrimes.html, Accessed: September 12, 2023.WeissteinE.W.Twin primeshttps://mathworld.wolfram.com/TwinPrimes.html, Accessed: September 12, 2023.Search in Google Scholar
Green B., Tao T., The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics, 167, 481–547, 2008.GreenB.TaoT.The primes contain arbitrarily long arithmetic progressionsAnnals of Mathematics1674815472008Search in Google Scholar
Kai W., Mimura M., Munemasa A., Seki S.I., Yoshino K., Constellation in prime elements of number fields, arXiv:2012.15669v2, 2020.KaiW.MimuraM.MunemasaA.SekiS.I.YoshinoK.Constellation in prime elements of number fieldsarXiv:2012.15669v2,2020Search in Google Scholar
Ericksen L., Primality testing and prime constellations, Šiauliai Mathematical Seminar, 3(11), 61–77, 2008.EricksenL.Primality testing and prime constellationsŠiauliai Mathematical Seminar31161772008Search in Google Scholar
Knill O., Some experiments in number theory, arXiv:1606.05971v1, 2016.KnillO.Some experiments in number theoryarXiv:1606.05971v1,2016Search in Google Scholar
Villegas F.R., Experimental Number Theory, Oxford University Press, UK, 2007.VillegasF.R.Experimental Number TheoryOxford University PressUK2007Search in Google Scholar
Zhang G., Martelli F., Torquato S., The structure factor of primes, Journal of Physics A: Mathematical and Theoretical, 51(115001), 1–16, 2018.ZhangG.MartelliF.TorquatoS.The structure factor of primesJournal of Physics A: Mathematical and Theoretical511150011162018Search in Google Scholar
https://oeis.org/wiki/Prime_constellations, Accessed: July 20, 2024.https://oeis.org/wiki/Prime_constellations, Accessed: July 20, 2024.Search in Google Scholar
Zhang Y., Bounded gaps between primes, Annals of Mathematics, 179(3), 1121–1174, 2014.ZhangY.Bounded gaps between primesAnnals of Mathematics1793112111742014Search in Google Scholar
Polya G., Patterns of Plausible Inference, Princeton University Press, USA, 1968.PolyaG.Patterns of Plausible InferencePrinceton University PressUSA1968Search in Google Scholar
Hejhal D.A., Friedman J., Gutzwiller M.C., Odlyzko A.M., Emerging Applications of Number Theory (Chapter: Number Theory and Formal Languages), 109, 547–570, Springer, USA, 1999.HejhalD.A.FriedmanJ.GutzwillerM.C.OdlyzkoA.M.Emerging Applications of Number Theory (Chapter: Number Theory and Formal Languages)109547570SpringerUSA1999Search in Google Scholar
https:www.reddit.com/r/learnmath/comments/lfnk5b/among_n_consecutive_numbers_one_i_always/?rdt=46836, Accessed: July 20, 2024.https:www.reddit.com/r/learnmath/comments/lfnk5b/among_n_consecutive_numbers_one_i_always/?rdt=46836, Accessed: July 20, 2024.Search in Google Scholar
Di Pietro G., Numerical analysis approach to twin primes conjecture, Notes on Number Theory and Discrete Mathematics, 27(3), 175–183, 2021.DiPietro G.Numerical analysis approach to twin primes conjectureNotes on Number Theory and Discrete Mathematics2731751832021Search in Google Scholar
Rokne J., A hierarchy of double, quadruple and octuple primes, International Journal of Mathematics and Computer in Engineering, 2(2), 111–122, 2024.RokneJ.A hierarchy of double, quadruple and octuple primesInternational Journal of Mathematics and Computer in Engineering221111222024Search in Google Scholar
Rokne J., Some observations on prime pairs quadruples and octuples, IEEE Canadian Review, 92, 8–11, 2023.RokneJ.Some observations on prime pairs quadruples and octuplesIEEE Canadian Review928112023Search in Google Scholar