Acceso abierto

On a generalization of the Cahn-Hilliard type equation with logarithmic nonlinearities for formation of islands


Cite

Introduction

The significance of the Cahn-Hilliard equation in materials science cannot be overstated. This equation effectively captures crucial qualitative aspects of two-phase systems, particularly in relation to phase separation processes. In the realm of materials science, the resulting pattern formation is termed the microstructure of the material, wielding a substantial influence on diverse material properties such as strength, hardness, and conductivity.

The broad applicability of the Cahn-Hilliard model across various evolutionary stages underscores its versatility. It serves as a robust model for early-stage systems, offering a qualitative description for intermediate times, and continues to be relevant for late-stage systems. Notably, the gradual evolution during late stages often occurs at such a slow pace that pattern formation essentially becomes frozen over the relevant time scales. Consequently, the observed practical behavior reflects the long-term dynamics of the system. For a more in-depth exploration, interested readers are directed to references such as [1,2,3,4,5].

Beyond its fundamental role in materials science, the Cahn-Hilliard equation finds application in modeling a diverse array of phenomena. This extends to areas such as population dynamics [6], bacterial films [7], thin films [8, 9], image processing [10, 11], and even celestial phenomena like the rings of Saturn [12].

In a related study [13], the authors explored a model put forth in [14]: ςt+Δ2ςΔf(ς)+η(ς)=0, \frac{{\partial \varsigma }}{{\partial t}} + {\Delta ^2}\varsigma - \Delta f(\varsigma ) + \eta (\varsigma ) = 0, where η(s)=s(s1) \eta (s) = s(s - 1) and f(s)=(s12)3(s12). f(s) = {(s - \frac{1}{2})^3} - (s - \frac{1}{2}). Furthermore, in [15] the author has analysed the model (1) with a regular nonlinear term (3), but with a general source term, which is given by η(s)=αs2+βs+γ, \eta (s) = \alpha {s^2} + \beta s + \gamma , where α > 0 and β, γ ∈ ℝ. The authors in [13, 15] have proved that the solutions can blow up in finite time and exist globally under strong assumptions on the solutions and not only on the initial data. However, the author in [16] considered the model (1)(2) but with logarithmic nonlinear terms f and proved the existence of a solution to the problem.

The Cahn-Hilliard equation incorporating a mass source term is expressed as ςt+Δ2ςΔf(ς)+η(x,ς)=0, \frac{{\partial \varsigma }}{{\partial t}} + {\Delta ^2}\varsigma - \Delta f(\varsigma ) + \eta (x,\varsigma ) = 0, where η represents the mass source term. This equation serves as a versatile model with applications in diverse biological contexts, notably in the growth of cancerous tumor and other biological entities. The choice of η determines specific behaviors: for instance, a linear function η(x, s) = αs, α > 0 yields the Cahn-Hilliard-Oono equation, capturing long-range interactions in phase separation (see [17]; see also [18] for the study of the limit dynamics when α approaches zero). A quadratic function η(x, s) = αs(s − 1), α > 0 finds applications in biology [19,20,21,22], particularly in wound healing and tumor growth. Another relevant function, commonly employed in tumor growth scenarios, is η(x,s)=α2(s+1)β(1s)2(1+s)2+s(x,t) \eta (x,s) = \frac{\alpha }{2}(s + 1) - \beta {(1 - s)^2}{(1 + s)^2} + s(x,t) , where α and β denote growth and death coefficients. Additionally, the function η(x, ς) = 1Ω\D(x)ς is associated with image inpainting applications, as documented in [23,24,25,26,27], and further explored with non-regular non-linear terms in [28].

In this paper, we explore the model (1) incorporating the nonlinear function η η(s)=s2p(1s) \eta (s) = {s^2} - p(1 - s) along with a logarithmic nonlinear term. The model is subject to Neumann boundary conditions. Under certain assumptions, we establish the existence of solutions for the problem. It is noteworthy that, as detailed in the article, the solutions in certain scenarios may experience a finite-time blow-up.

Mathematical problem

Let Ω ⊂ ℝn, n = 1, 2 or 3 be a bounded and regular domain with boundary Γ. We consider the following problem tς+Δ2ςΔf(ς)+η(ς)=0, {\partial _t}\varsigma + {\Delta ^2}\varsigma - \Delta f(\varsigma ) + \eta (\varsigma ) = 0, νς=νΔς=0,onΓ, {\partial _\nu }\varsigma = {\partial _\nu }\Delta \varsigma = 0,\;{\rm{on}}\;\Gamma , ς(0,x)=ς0(x),inΩ. \varsigma (0,x) = {\varsigma _0}(x),\;{\rm{in}}\;\Omega . Assume that all constants are equal to one, ν is the outer unit normal vector to Γ, f = F′ as defined below and η(s) = s2p(1 − s) where p is a strictly positive real number.

Note that fλ1. {f^\prime} \ge - {\lambda _1}. Let us write F(s)=λ121s2+F1(s) F(s) = \frac{{{\lambda _1}}}{2}\left( {1 - {s^2}} \right) + {F_1}(s) with f1=F1 {f_1} = F_1^\prime and introduce for N ∈ ℕ the approximated function F1,NC4(ℝ), which is defined by: F1,N(4)(s)=F1(4)11N;ifs11N,F1(4)(s);if|s|11N,F(4)1+1N;ifs1+1N. F_{1,N}^{(4)}(s) = \left\{ {\begin{array}{*{20}{l}}{F_1^{(4)}\left( {1 - \frac{1}{N}} \right);}&{{\rm{if}}\;s \ge 1 - \frac{1}{N},}\\{F_1^{(4)}(s);}&{{\rm{if}}\;|s| \le 1 - \frac{1}{N},}\\{{F^{(4)}}\left( { - 1 + \frac{1}{N}} \right);}&{{\rm{if}}\;s \le - 1 + \frac{1}{N}.}\end{array}} \right. F1,N(k)(0)=F1(k)(0),k=0,1,2,3 F_{1,N}^{(k)}(0) = F_1^{(k)}(0),\quad k = 0,1,2,3 and f1(s)=f(s)+λ1s=λ22ln1+s1s {f_1}(s) = f(s) + {\lambda _1}s = \frac{{{\lambda _2}}}{2}\ln \left( {\frac{{1 + s}}{{1 - s}}} \right)

Hence, F1,N(s)= 1k!F1(k)11Ns1+1Nk;ifs11N,F1(s);if|s|11N,k=041k!F1(k)1+1Ns+11Nk;ifs1+1N. {F_{1,N}}(s) = \left\{ {\begin{array}{*{20}{l}}{\sum \frac{1}{{k!}}F_1^{(k)}\left( {1 - \frac{1}{N}} \right){{\left( {s - 1 + \frac{1}{N}} \right)}^k};}&{{\rm{if}}\;s \ge 1 - \frac{1}{N},}\\{{F_1}(s);}&{{\rm{if}}\;|s| \le 1 - \frac{1}{N},}\\{\sum\limits_{k = 0}^4 \frac{1}{{k!}}F_1^{(k)}\left( { - 1 + \frac{1}{N}} \right){{\left( {s + 1 - \frac{1}{N}} \right)}^k};}&{{\rm{if}}\;s \le - 1 + \frac{1}{N}.}\end{array}} \right. Setting FN(s)=λ12(1s2)+F1,N(s),f1,N=F1,N \begin{array}{*{20}{c}}{{F_N}(s) = \frac{{{\lambda _1}}}{2}(1 - {s^2}) + {F_{1,N}}(s),}\\{{f_{1,N}} = F_{1,N}^\prime}\end{array} and fN=FN, {f_N} = F_N^\prime, there holds f1,N0,fNλ1, f_{1,N}^\prime \ge 0,\;\;\;\;\;f_N^\prime \ge - {\lambda _1}, FNc1,c10, {F_N} \ge - {c_1},\;\;\;\;{c_1} \ge 0, fN(s).sc2FN(s)+|f1,N(s)|c3,c2>0,c30,s, {f_N}(s).s \ge {c_2}{F_N}(s) + |{f_{1,N}}(s)| - {c_3},\;\;\;\;\;{c_2} > 0,{c_3} \ge 0,s \in \mathbb{R}, and fN(s+m)fN(m)sc4s4+m2s2c5,c4>0,c50,ands,m. \left( {{f_N}(s + m) - {f_N}(m)} \right)s \ge {c_4}\left( {{s^4} + {m^2}{s^2}} \right) - {c_5},\;\;\;\;{c_4} > 0,{c_5} \ge 0,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{and}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} s,m \in \mathbb{R}. The constants ci, i = 1, ⋯ , 5 are independent of N for N large enough. More generally: fNs+msc6,mFN(s+m)+|f1,N(s+m)|c7,m,s,m(1,1), {f_N}\left( {s + m} \right)s \ge {c_{6,m}}\left( {{F_N}(s + m) + |{f_{1,N}}(s + m)|} \right) - {c_{7,m}},{\kern 1pt} {\kern 1pt} s \in \mathbb{R},{\kern 1pt} m \in ( - 1,1), where the constants c6,m and c7,m are independent of N for sufficiently large N and exhibit continuous and bounded dependence on m.

Finally, we arrive at

Lemma 1

|η(s+m)η(m)|c8s2+|ms|+c9 |\eta (s + m) - \eta (m)| \le {c_8}\left( {{s^2} + |ms|} \right) + {c_9} and |η(s+m)η(m)|2c10s4+s2(m2+1)+c11. |\eta (s + m) - \eta (m){|^2} \le {c_{10}}\left( {{s^4} + {s^2}({m^2} + 1)} \right) + {c_{11}}.

Proof

|η(s+m)η(m)|=|s2+2sm+ps|s2+2|ms|+p|s|s2+2|ms|+p22+s22c8s2+|ms|+c9 \begin{array}{*{20}{l}}{|\eta (s + m) - \eta (m)|}&{ = \;|{s^2} + 2sm + ps|}\\{}&{ \le {s^2} + 2|ms| + p|s|}\\{}&{ \le {s^2} + 2|ms| + \frac{{{p^2}}}{2} + \frac{{{s^2}}}{2}}\\{}&{ \le {c_8}\left( {{s^2} + |ms|} \right) + {c_9}}\end{array} and |η(s+m)η(m)|2cs2+|ms|+c2cs2+|ms|+12cs4+2s2|ms|+m2s2+2s2+2|ms|+1cs4+2s2m22+s22+m2s2+2s2+212+m2s22+1c10s4+m2s2+s2+c11. \begin{array}{*{20}{l}}{|\eta (s + m) - \eta (m){|^2}}&{ \le \;{{\left( {c\left( {{s^2} + |ms|} \right) + {c^\prime}} \right)}^2}}\\{}&{ \le c{{\left( {\left( {{s^2} + |ms|} \right) + 1} \right)}^2}}\\{}&{ \le c\left( {{s^4} + 2{s^2}|ms| + {m^2}{s^2} + 2{s^2} + 2|ms| + 1} \right)}\\{}&{ \le c\left( {{s^4} + 2{s^2}\left( {\frac{{{m^2}}}{2} + \frac{{{s^2}}}{2}} \right) + {m^2}{s^2} + 2{s^2} + 2\left( {\frac{1}{2} + \frac{{{m^2}{s^2}}}{2}} \right) + 1} \right)}\\{}&{ \le {c_{10}}\left( {{s^4} + {m^2}{s^2} + {s^2}} \right) + {c_{11}}.}\end{array} We now introduce the approximated problem tςN+Δ2ςNΔfN(ςN)+η(ςN)=0, {\partial _t}{\varsigma _N} + {\Delta ^2}{\varsigma _N} - \Delta {f_N}({\varsigma _N}) + \eta ({\varsigma _N}) = 0, νςN=νΔςN=0,onΓ, {\partial _\nu }{\varsigma _N} = {\partial _\nu }\Delta {\varsigma _N} = 0,\;{\rm{on}}\;\Gamma , ςN(0,x)=ς0(x),inΩ. {\varsigma _N}(0,x) = {\varsigma _0}(x),\;{\rm{in}}\;\Omega . From (17) and (19)(20) it follows that we have the existence and uniqueness (depending on the regularity of ς0) of the (at least) local in time solution ςN of (21)(23).

Notations

We denote by (.) the usual L2-scalar product with associated norm ||.||. We also set ||.||−1 = ||(−Δ)−1||, where (−Δ)−1 denotes the inverse of the minus Laplace operator associated with Neumann boundary conditions and acting on zero-mean functions.

More generally, we denote by ||.||X the norm on the Banach space X.

We set .=1Vol(Ω)Ω.dx \langle {\kern 1pt} .{\kern 1pt} \rangle = \frac{1}{{{\kern 1pt} {\rm{Vol}}{\kern 1pt} (\Omega )}}\int_\Omega .dx , being understood that if ζ ∈ H1(Ω) = H1(Ω)′ then ζ=1Vol(Ω)ζ,1H1(Ω),H1(Ω). \langle \zeta \rangle = \frac{1}{{{\kern 1pt} {\rm{Vol}}{\kern 1pt} (\Omega )}}{\langle \zeta ,1\rangle _{{H^{ - 1}}(\Omega ),{H^1}(\Omega )}}. We also set, whenever this makes sense ζ¯=ζζ. \overline \zeta = \zeta - \langle \zeta \rangle . We note that: ζ||ζ¯||12+ζ212,ζ||ζ¯||2+ζ212,ζ||ζ||2+ζ212,ζ||Δζ||2+ζ212 \begin{array}{*{20}{c}}{\zeta \mapsto {{\left( {||\overline \zeta ||_{ - 1}^2 + \langle {\zeta ^2}\rangle } \right)}^{\frac{1}{2}}},}\\{\zeta \mapsto {{\left( {||\overline \zeta |{|^2} + \langle {\zeta ^2}\rangle } \right)}^{\frac{1}{2}}},}\\{\zeta \mapsto {{\left( {||\nabla \zeta |{|^2} + \langle {\zeta ^2}\rangle } \right)}^{\frac{1}{2}}},}\\{\zeta \mapsto {{\left( {||\Delta \zeta |{|^2} + \langle {\zeta ^2}\rangle } \right)}^{\frac{1}{2}}}}\end{array} are all norms on H−1(Ω), L2(Ω), H1(Ω) or H2(Ω) that are equivalent to the usual norms on these spaces. Furthermore, ||.||−1 is a norm on {ζ ∈ H−1(Ω),〈ζ〉 = 0} which is equivalent to the usual H−1 norm.

Note that the same letter c (and sometimes also c′ or c″) in this paper stands for (generally positive) constants that are independent of N and may change from line to line. The same applies to constants such as cδ, cδ c_\delta ^\prime and cδ c_\delta ^{''} which depend on a parameter δ.

Applications

In this part, we observe the existence and blow up properties of the results founded by using projected scheme.

Existence / blow up solutions

In this section, our objective is to establish estimates for uN that are independent of N. These estimates can be rigorously justified based on the approximated problems. A crucial aspect involves obtaining a uniform (with respect to N) estimate for fN (ςN) in L2(Ω × (0, T)), where T > 0 is independent of N. This is essential for passing to the limit in the nonlinear term and obtaining a solution to the singular initial problem. Notably, achieving this goal necessitates a uniform (with respect to N) strict separation property for 〈ςN〉 from the singular points −1 and 1. It is worth mentioning that such a strict separation property is straightforward for the original Cahn-Hilliard equation, given the conservation of the spatial average of the order parameter, provided that the same property holds for the initial datum.

We assume that ς0H1(Ω) ∩ L(Ω), with |ς0(x)| < 1 almost everywhere in Ω, and |ς0|12δ,δ(0,12]given. |\langle {\varsigma _0}\rangle | \le 1 - 2\delta ,{\kern 1pt} {\kern 1pt} \delta \in (0,\frac{1}{2}]{\kern 1pt} {\kern 1pt} \;{\rm{given}}{\kern 1pt} . If we first integrate (21) over Ω, we find due to (22), dςNdt+η(ςN)=0. \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \langle \eta ({\varsigma _N})\rangle = 0. In fact, we have that dςNdt+Δ2ςNΔfN(ςN)+η(ςN)=0. \frac{{d{\varsigma _N}}}{{dt}} + {\Delta ^2}{\varsigma _N} - \Delta {f_N}({\varsigma _N}) + \eta ({\varsigma _N}) = 0. Noting that ΩΔ2ςdx=ΩΔς.1dx+ΓΔςν.ςds=0. \int_\Omega {\Delta ^2}\varsigma {\kern 1pt} dx = - \int_\Omega \nabla \Delta \varsigma .\nabla 1dx + \int_\Gamma \frac{{\partial \Delta \varsigma }}{{\partial \nu }}.\varsigma {\kern 1pt} ds = 0. Furthermore, ΩΔfN(ςN)dx=ΩfN(ςN).1dx+ΓfN(ςN)ν1ds=0, \int_\Omega \Delta {f_N}({\varsigma _N}){\kern 1pt} dx = - \int_\Omega \nabla {f_N}({\varsigma _N}).\nabla 1dx + \int_\Gamma \frac{{\partial {f_N}({\varsigma _N})}}{{\partial \nu }}1{\kern 1pt} ds = 0, hence ddtΩςNdx+Ωη(ςN)dx=0, \frac{d}{{dt}}\int_\Omega {\varsigma _N}dx + \int_\Omega \eta ({\varsigma _N})dx = 0, which yields dςNdt+η(ςN)=0. \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \langle \eta ({\varsigma _N})\rangle = 0. On the other hand, setting ςN = 〈ςN〉 + ζN, (ζN) = 0 yields dςNdt+ςN2p(1ςN)=0 \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \langle \varsigma _N^2 - p(1 - {\varsigma _N})\rangle = 0 and dςNdt+ςN+ζN2p1ςN=0. \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \langle {\left( {\langle {\varsigma _N}\rangle + {\zeta _N}} \right)^2} - p\left( {1 - {\varsigma _N}} \right)\rangle = 0. Therefore, dςNdt+ςN2+2ςNζN+ζN2p1ςN=0, \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \langle {\langle {\varsigma _N}\rangle ^2} + 2\langle {\varsigma _N}\rangle \langle {\zeta _N}\rangle + \zeta _N^2 - p\left( {1 - {\varsigma _N}} \right)\rangle = 0, so that dςNdt+ςN2+2ςNζN+ζN2p1ςN=0, \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + {\langle {\varsigma _N}\rangle ^2} + 2\langle {\varsigma _N}\rangle \langle {\zeta _N}\rangle + \langle \zeta _N^2\rangle - p\left( {1 - \langle {\varsigma _N}\rangle } \right) = 0, it then follow that dςNdt+ςN2p1ςN=ζN2. \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + {\langle {\varsigma _N}\rangle ^2} - p\left( {1 - \langle {\varsigma _N}\rangle } \right) = - \langle \zeta _N^2\rangle . Hence, we get dςNdt+ηςN=ζN2. \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \eta \langle {\varsigma _N}\rangle = - \langle \zeta _N^2\rangle . Furthermore, ζN is a solution to: tζN+Δ2ζNΔfN(ςN)+η(ςN)¯=0, {\partial _t}{\zeta _N} + {\Delta ^2}{\zeta _N} - \Delta {f_N}({\varsigma _N}) + \overline {\eta ({\varsigma _N})} = 0, νζN=νΔζN=0,onΓ, {\partial _\nu }{\zeta _N} = {\partial _\nu }\Delta {\zeta _N} = 0,\;{\rm{on}}\;\Gamma , ζN|t=0=ζ0(x),inΩ. {\zeta _N}{|_{t = 0}} = {\zeta _0}(x),\;{\rm{in}}\;\Omega . Since (21) gives: ζN+ςNt+Δ2ςNΔfN(ςN)+η(ςN)=0ζNt+ςNt+Δ2ςNΔfN(ςN)+η(ςN)=0ζNtg(ςN)+Δ2ζNΔfN(ςN)+η(ςN)=0ζNt+Δ2ζNΔfN(ςN)+η(ςN)¯=0. \begin{array}{*{20}{r}}{\frac{{\partial \left( {{\zeta _N} + \langle {\varsigma _N}\rangle } \right)}}{{\partial t}} + {\Delta ^2}{\varsigma _N} - \Delta {f_N}({\varsigma _N}) + \eta ({\varsigma _N}) = 0}\\{\frac{{\partial {\zeta _N}}}{{\partial t}} + \frac{{\partial \langle {\varsigma _N}\rangle }}{{\partial t}} + {\Delta ^2}{\varsigma _N} - \Delta {f_N}({\varsigma _N}) + \eta ({\varsigma _N}) = 0}\\{\frac{{\partial {\zeta _N}}}{{\partial t}} - \langle g({\varsigma _N})\rangle + {\Delta ^2}{\zeta _N} - \Delta {f_N}({\varsigma _N}) + \eta ({\varsigma _N}) = 0}\\{\frac{{\partial {\zeta _N}}}{{\partial t}} + {\Delta ^2}{\zeta _N} - \Delta {f_N}({\varsigma _N}) + \overline {\eta ({\varsigma _N})} = 0.}\end{array} ςNν=ζNνandΔςnν=Δζnν. \frac{{\partial {\varsigma _N}}}{{\partial \nu }} = \frac{{\partial {\zeta _N}}}{{\partial \nu }}{\kern 1pt} \;{\kern 1pt} {\rm{and}}\;{\kern 1pt} {\kern 1pt} \frac{{\partial \Delta {\varsigma _n}}}{{\partial \nu }} = \frac{{\partial \Delta {\zeta _n}}}{{\partial \nu }}. These equations can be written equivalently, if we multiply by −(Δ)−1, as: (Δ)1tζNΔζN+fN(ςN)¯+(Δ)1η(ςN)¯=0,inΩ×(0,T), {( - \Delta )^{ - 1}}{\partial _t}{\zeta _N} - \Delta {\zeta _N} + \overline {{f_N}({\varsigma _N})} + {( - \Delta )^{ - 1}}\overline {\eta ({\varsigma _N})} = 0,\;{\rm{in}}\;\Omega \times (0,T), νζN=0,onΓ, {\partial _\nu }{\zeta _N} = 0,\;{\rm{on}}\;\Gamma , ζN|t=0=ζ0,inΩ. {\zeta _N}{|_{t = 0}} = {\zeta _0},\;{\rm{in}}\;\Omega . Multiplying (30) by ζN and integrating over Ω and by parts, we have: 12ddt||ζN||12+ζN2+[fN(ςN)¯,ζN]+[η(ςN),(Δ1)1ζN]=0. \frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + \parallel \nabla {\zeta _N}{\parallel ^2} + [\overline {{f_N}({\varsigma _N})} ,{\zeta _N}] + [\eta ({\varsigma _N}),{( - {\Delta ^{ - 1}})^{ - 1}}{\zeta _N}] = 0. Since Ω(Δ)1ζNtζNdx=12ddtΩ(Δ)1ζN2dx=12ddt||ζN||12 \begin{array}{*{20}{l}}{\int_\Omega {{( - \Delta )}^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}}{\zeta _N}{\kern 1pt} dx}&{ = \frac{1}{2}\frac{d}{{dt}}\int_\Omega {{( - \Delta )}^{ - 1}}\zeta _N^2{\kern 1pt} dx}\\{}&{ = \frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2}\end{array} and ΩΔζNζNdx=ΩζNζNdxΓζNνζNds=||ζN||2. \begin{array}{*{20}{l}}{\int_\Omega - \Delta {\zeta _N}{\kern 1pt} {\zeta _N}{\kern 1pt} dx}&{ = \int_\Omega \nabla {\zeta _N} \cdot \nabla {\zeta _N}{\kern 1pt} dx - \int_\Gamma \frac{{\partial {\zeta _N}}}{{\partial \nu }}{\zeta _N}{\kern 1pt} ds}\\{}&{ = \;||\nabla {\zeta _N}|{|^2}.}\end{array} Note that [fN(ςN)¯,ζN]=[fN(ςN)fN(ςN),ζN] [\overline {{f_N}({\varsigma _N})} ,{\zeta _N}] = [{f_N}({\varsigma _N}) - {f_N}(\langle {\varsigma _N}\rangle ),{\zeta _N}] and taking s = ζN, m = 〈ςN〉 in (17), we get [fN(ςN)¯,ζN]c4ΩζN4+ςN2ζN2dxc. [\overline {{f_N}({\varsigma _N})} ,{\zeta _N}] \ge {c_4}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx - c. Indeed, from (17), we have fN(s+m)fN(m)sc4s4+m2s2c5fN(ςN)fNςNζNc4ζN4+ςN2ζN2c5, \begin{array}{*{20}{l}}{\left( {{f_N}(s + m) - {f_N}(m)} \right)s \ge {c_4}\left( {{s^4} + {m^2}{s^2}} \right) - {c_5}}\\{\left( {{f_N}({\varsigma _N}) - {f_N}\langle {\varsigma _N}\rangle } \right){\zeta _N} \ge {c_4}\left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right) - {c_5},}\end{array} so [fN(ςN)fNςN,ζN]=ΩfN(ςN)fNςNζNdxc4ΩζN4+ςN2ζN2dxc5. \begin{array}{*{20}{l}}{[{f_N}({\varsigma _N}) - {f_N}\langle {\varsigma _N}\rangle ,{\zeta _N}]}&{ = \int_\Omega \left( {{f_N}({\varsigma _N}) - {f_N}\langle {\varsigma _N}\rangle } \right){\zeta _N}{\kern 1pt} dx}\\{}&{ \ge {c_4}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx - {c_5}.}\end{array} Furthermore, |[η(ςN)¯,(Δ1)ζN]|=|[η(ςN)η(ςN),(Δ1)ζN]]|c||ζN||||η(ςN)g(ςN)||, \begin{array}{*{20}{l}}{|[\overline {\eta ({\varsigma _N})} ,( - {\Delta ^{ - 1}}){\zeta _N}]|}&{ = \;|[\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle ),( - {\Delta ^{ - 1}}){\zeta _N}]]|}\\{}&{ \le c||{\zeta _N}||{\kern 1pt} ||\eta ({\varsigma _N}) - g(\langle {\varsigma _N}\rangle )||,}\end{array} by Cauchy Schwartz and using ||ζN||−1c||ζN|| which results after reapplying Lemma (1) with s = ζN and m = 〈ςN〉 and Young’s inequality: |[η(ςN)¯,(Δ1)ζN]|c44ΩζN4+ςN2ζN2dx+c||ζN||2c44ΩζN4+ςN2ζN2dx+c. \begin{array}{*{20}{l}}{|[\overline {\eta ({\varsigma _N})} ,( - {\Delta ^{ - 1}}){\zeta _N}]|}&{ \le \frac{{{c_4}}}{4}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + c||{\zeta _N}|{|^2}}\\{}&{ \le \frac{{{c_4}}}{4}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + c.}\end{array} Indeed, we have that |[η(ςN)¯,(Δ1)ζN]|c||ζN||||η(ςN)η(ςN)||c||ζN||22+||η(ςN)η(ςN)||22c2||ζN||2+c9ΩζN4+ςN2ζN2+ζN2dx+c10c42ΩζN4+ςN2ζN2dx+c||ζN||2+cc42ΩζN4+ςN2ζN2dx+c. \begin{array}{*{20}{l}}{|[\overline {\eta ({\varsigma _N})} ,( - {\Delta ^{ - 1}}){\zeta _N}]|}&{ \le c||{\zeta _N}||{\kern 1pt} ||\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle )||}\\{}&{ \le c\left( {\frac{{||{\zeta _N}|{|^2}}}{2} + \frac{{||\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle )|{|^2}}}{2}} \right)}\\{}&{ \le \frac{c}{2}\left( {||{\zeta _N}|{|^2} + {c_9}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2 + \zeta _N^2} \right){\kern 1pt} dx + {c_{10}}} \right)}\\{}&{ \le \frac{{{c_4}}}{2}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + c||{\zeta _N}|{|^2} + {c^\prime}}\\{}&{ \le \frac{{{c_4}}}{2}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + c.}\end{array} It follows from (33)(35), that ddt||ζN||12+c||ζN||H1(Ω)2+ΩζN4+ςN2ζN2dxc,c>0. \frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + c\left( {||{\zeta _N}||_{{H^1}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right) \le {c^\prime},{\kern 1pt} {\kern 1pt} c > 0. Since 12ddt||ζN||12+||ζN||2=[fN(ςN)¯,ζN][η(ςN)¯,Δ1ζN]c4ΩζN4+ςN2ζN2dx+c+c42ΩζN4+ςN2ζN2dx+c. \begin{array}{*{20}{l}}{\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + ||\nabla {\zeta _N}|{|^2}}&{ = - [\overline {{f_N}({\varsigma _N})} ,{\zeta _N}] - [\overline {\eta ({\varsigma _N})} , - {\Delta ^{ - 1}}{\zeta _N}]}\\{}&{ \le - {c_4}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + c + \frac{{{c_4}}}{2}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + c.}\end{array} Next, multiplying (30) by −ΔζN and integrating over Ω, we obtain 12ddt||ζN||2+||ΔζN||2+[fN(ςN)¯,ΔζN]+[η(ςN)¯,ζN]=0. \frac{1}{2}\frac{d}{{dt}}||{\zeta _N}|{|^2} + ||\Delta {\zeta _N}|{|^2} + [\overline {{f_N}({\varsigma _N})} , - \Delta {\zeta _N}] + [\overline {\eta ({\varsigma _N})} ,{\zeta _N}] = 0. In fact, we have ΩΔ1ζNt(ΔζN)dx=ΩζNtζNdx=12ddtΩζN2dx=12ddt||ζN||2. \begin{array}{*{20}{l}}{\int_\Omega - {\Delta ^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}}{\kern 1pt} ( - \Delta {\zeta _N}){\kern 1pt} dx}&{ = \int_\Omega \frac{{\partial {\zeta _N}}}{{\partial t}}{\kern 1pt} {\zeta _N}{\kern 1pt} dx}\\{}&{ = \frac{1}{2}\frac{d}{{dt}}\int_\Omega \zeta _N^2{\kern 1pt} dx}\\{}&{ = \frac{1}{2}\frac{d}{{dt}}||{\zeta _N}|{|^2}.}\end{array} Furthermore, owing to (14) [fN(ςN)¯,ΔζN]=[fN(ςN),ΔζN]=ΩfN(ςN)ΔζNdx=ΩfN(ςN).ζNdx=Ωf(ςN)ςNζNdx=[f(ςN)ςN,ζN]λ1||ζN||2 \begin{array}{*{20}{l}}{[\overline {{f_N}({\varsigma _N})} , - \Delta {\zeta _N}]}&{ = [{f_N}({\varsigma _N}), - \Delta {\zeta _N}]}\\{}&{ = - \int_\Omega {f_N}({\varsigma _N}){\kern 1pt} \Delta {\zeta _N}{\kern 1pt} dx}\\{}&{ = \int_\Omega \nabla {f_N}({\varsigma _N}).\nabla {\zeta _N}{\kern 1pt} dx}\\{}&{ = \int_\Omega {f^\prime}({\varsigma _N})\nabla {\varsigma _N}\nabla {\zeta _N}{\kern 1pt} dx}\\{}&{ = [{f^\prime}({\varsigma _N})\nabla {\varsigma _N},\nabla {\zeta _N}]}\\{}&{ \ge - {\lambda _1}||\nabla {\zeta _N}|{|^2}}\end{array} and owing once more to Lemma (1), we have |[η(ςN)¯,ζN]|=|[η(ςN)η(ςN),ζN]|12||ΔζN||2+cΩζN4+ςN2ζN2dx+c. \begin{array}{*{20}{l}}{|[\overline {\eta ({\varsigma _N})} ,{\zeta _N}]|}&{ = \;|[\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle ),{\zeta _N}]|}\\{}&{ \le \frac{1}{2}||\Delta {\zeta _N}|{|^2} + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + {c^\prime}.}\end{array} Indeed, |[η(ςN)η(ςN),ζN]|||η(ςN)η(ςN)||||ζN||||ζN||22+||η(ςN)η(ςN)||2212||ΔζN||2+cΩζN4+ςN2ζN2dx+c. \begin{array}{*{20}{l}}{|[\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle ),{\zeta _N}]|}&{ \le \;||\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle )||{\kern 1pt} ||{\zeta _N}||}&{}&{}\\{}&{ \le \frac{{||{\zeta _N}|{|^2}}}{2} + \frac{{||\eta ({\varsigma _N}) - \eta (\langle {\varsigma _N}\rangle )|{|^2}}}{2}}&{}&{}\\{}&{ \le \frac{1}{2}||\Delta {\zeta _N}|{|^2} + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + {c^\prime}.}&{}&{}\end{array} From (37)(39) it follows that ddt||ζN||2+||ΔζN||2c||ζN||H1(Ω)2+ΩζN4+ςN2ζN2dx+c. \frac{d}{{dt}}||{\zeta _N}|{|^2} + ||\Delta {\zeta _N}|{|^2} \le c\left( {||{\zeta _N}||_{{H^1}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right) + {c^\prime}. By (37), we have 12ddt||ζN||2+||ΔζN||2=[fN(ςN)¯,ΔζN][η(ςN)¯,ζN]λ1||ζN||2+12||ΔζN||2+cΩζN4+ςN2ζN2dx+c, \begin{array}{*{20}{l}}{\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}|{|^2} + ||\Delta {\zeta _N}|{|^2}}&{ = \;[\overline {{f_N}({\varsigma _N})} , - \Delta {\zeta _N}] - [\overline {\eta ({\varsigma _N})} ,{\zeta _N}]}&{}&{}\\{}&{ \le {\lambda _1}||\nabla {\zeta _N}|{|^2} + \frac{1}{2}||\Delta {\zeta _N}|{|^2} + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx + {c^\prime},}&{}&{}\end{array} so, ddt||ζN||2+||ΔζN||2c||ζN||2+ΩζN4+ςN2ζN2dx+c. \frac{d}{{dt}}||{\zeta _N}|{|^2} + ||\Delta {\zeta _N}|{|^2} \le c\left( {||\nabla {\zeta _N}|{|^2} + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right) + {c^\prime}. Finally, summing (36) and γ1 times (40), where γ1 > 0 is small enough and independent of N, we find ddt||ζN||12+γ1||ζN||2+c||ζN||H2(Ω)2+ΩζN4+ςN2ζN2dxc,c>0. \frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right) \le {c^\prime},\;\;\;c > 0. Indeed, we have (36)+γ1(40) gives ddt||ζN||2+γ1||ζN||2+c||ζN||H1(Ω)+γ1||ΔζN||2+cΩζN4+ςN2ζN2dxc, \frac{d}{{dt}}\left( {||{\zeta _N}|{|^2} + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c||{\zeta _N}|{|_{{H^1}(\Omega )}} + {\gamma _1}||\Delta {\zeta _N}|{|^2} + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx \le {c^\prime}, then ddt||ζN||2+γ1||ζN||2+c||ζN||H2(Ω)+ΩζN4+ςN2ζN2dxc. \frac{d}{{dt}}\left( {||{\zeta _N}|{|^2} + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}|{|_{{H^2}(\Omega )}} + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right) \le {c^\prime}. We now come back to (25)(26). Noting that g(s) ≥ psp, we have dςNdt+η(ςN)=ζN20dςNdtη(ςN)pςN+pdςNdt+pςNp. \begin{array}{*{20}{c}}{\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \eta (\langle {\varsigma _N}\rangle ) = - \langle \zeta _N^2\rangle \le 0}\\{\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} \le - \eta (\langle {\varsigma _N}\rangle ) \le - p\langle {\varsigma _N}\rangle + p}\\{\frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + p\langle {\varsigma _N}\rangle \le p.}\end{array} Consider the ODE: dςNdt+pςN=p, \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + p\langle {\varsigma _N}\rangle = p, then dςNdt=pςN1, \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} = - p\left( {\langle {\varsigma _N}\rangle - 1} \right), hence dςNςN1=pdt, \frac{{d\langle {\varsigma _N}\rangle }}{{\left( {\langle {\varsigma _N}\rangle - 1} \right)}} = - p{\kern 1pt} dt, we infer ln|ςN1|=pt+k, \ln |\langle {\varsigma _N}\rangle - 1| = - p{\kern 1pt} t + k, so ςN=cept+1, \langle {\varsigma _N}\rangle = c{e^{ - p{\kern 1pt} t}} + 1, but at t = 0, 〈ςN〉 = 〈ς0〉, hence c = 〈ς0〉 − 1.

Finally, ςN(t)ς01ept+1, \langle {\varsigma _N}(t)\rangle \le \left( {\langle {\varsigma _0}\rangle - 1} \right){e^{ - p{\kern 1pt} t}} + 1, as long as it exists. In particular, ςN(t)<1. \langle {\varsigma _N}(t)\rangle < 1. Note that it follows from (41) that: ddt||ζN||12+γ1||ζN||2+c||ζN||12+γ1||ζN||2c,c>0. \frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) \le {c^\prime},{\kern 1pt} {\kern 1pt} c > 0. Indeed, we have that c||ζN||H2(Ω)2+ΩζN4+ςN2ζN2dxc||ζN||H(Ω)212||ΔζN||2cc||ΔζN||2cc||ζN||2cc2||ζN||2+c2||ζN||2cc||ζN||12+γ1||ζN||2c, \begin{array}{*{20}{l}}{c\left( {||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right)}&{ \ge c||{\zeta _N}||_{{H^(}\Omega )}^2 - \frac{1}{2}||\Delta {\zeta _N}|{|^2} - {c^\prime}}&{}&{}&{}&{}&{}\\{}&{ \ge c||\Delta {\zeta _N}|{|^2} - {c^\prime}}&{}&{}&{}&{}&{}\\{}&{ \ge c||{\zeta _N}|{|^2} - {c^\prime}}&{}&{}&{}&{}&{}\\{}&{ \ge \frac{c}{2}||{\zeta _N}|{|^2} + \frac{c}{2}||{\zeta _N}|{|^2} - {c^\prime}}&{}&{}&{}&{}&{}\\{}&{ \ge c\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) - {c^\prime},}&{}&{}&{}&{}&{}\end{array} but by (41) ddt||ζN||12+γ1||ζN||2+c||ζN||12+γ1||ζN||2ddt||ζN||12+γ1||ζN||2+c||ζN||H2(Ω)2+ΩζN4+ςN2ζN2dx+c2c. \begin{array}{*{20}{c}}{\frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right)}\\{ \le \frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right){\kern 1pt} dx} \right) + {c^\prime}}\\{ \le 2{c^\prime}.}\end{array} Which yields ||ζN(t)||2cect||ζ0||2+c,c>0. ||{\zeta _N}(t)|{|^2} \le c{e^{ - {c^\prime}t}}||{\zeta _0}|{|^2} + {c^\prime},{\kern 1pt} {\kern 1pt} {c^{''}} > 0. In fact, ddt||ζN||12+γ1||ζN||2+c||ζN||12+γ1||ζN||2c,c>0, \frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) \le {c^\prime},{\kern 1pt} {\kern 1pt} c > 0, then by Gronwall lemma ||ζN||12+γ1||ζN||2||ζ0||12+γ1||ζ0||2+cγ1||ζN||2ect||ζ0||12+γ1||ζ0||2+c||ζN||21γ1ect||ζ0||12+γ1||ζ0||2+cγ1, \begin{array}{*{20}{c}}{||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2} \le \left( {||{\zeta _0}||_{ - 1}^2 + {\gamma _1}||{\zeta _0}|{|^2}} \right) + {c^{''}}}\\{{\gamma _1}||{\zeta _N}|{|^2} \le {e^{ - ct}}\left( {||{\zeta _0}||_{ - 1}^2 + {\gamma _1}||{\zeta _0}|{|^2}} \right) + {c^{''}}}\\{||{\zeta _N}|{|^2} \le \frac{1}{{{\gamma _1}}}{e^{ - ct}}\left( {||{\zeta _0}||_{ - 1}^2 + {\gamma _1}||{\zeta _0}|{|^2}} \right) + \frac{{{c^{''}}}}{{{\gamma _1}}},}\end{array} but ||ζ0||12q||ζ0||2 ||{\zeta _0}||_{ - 1}^2 \le q||{\zeta _0}|{|^2} , then ||ζN||21γ1ectq||ζ0||2+γ1||ζ0||2+cγ1cect||ζ0||2+c. \begin{array}{*{20}{l}}{||{\zeta _N}|{|^2}}&{ \le \frac{1}{{{\gamma _1}}}{e^{ - ct}}\left( {q||{\zeta _0}|{|^2} + {\gamma _1}||{\zeta _0}|{|^2}} \right) + \frac{{{c^{''}}}}{{{\gamma _1}}}}&{}&{}\\{}&{ \le c{e^{ - {c^\prime}t}}||{\zeta _0}|{|^2} + {c^{''}}.}&{}&{}\end{array} As long as it exists, in particular ζN2=k||ζN2(t)||c||ζ0||2+c,sinceect1, \langle \zeta _N^2\rangle = k||\zeta _N^2(t)|| \le c||{\zeta _0}|{|^2} + {c^\prime},{\kern 1pt} \;{\rm{since}}\;{\kern 1pt} {e^{ - {c^\prime}t}} \le 1, and ζ0 = ς0 − 〈ς0〉 and |〈ς0〉| ≤ 1 − 2δ, so ζN2(t)c(ς0,δ), \langle \zeta _N^2(t)\rangle \le c({\varsigma _0},\delta ), as long as it exists.

Let y± be the solution of the Ricatti ODE’s y++η(y+)=0,y+(0)=ς0 y_ + ^\prime + \eta ({y_ + }) = 0,{\kern 1pt} {\kern 1pt} {y_ + }(0) = \langle {\varsigma _0}\rangle y+η(y)=c(ς0,δ),y(0)=ς0, y_ - ^\prime + \eta ({y_ - }) = - c({\varsigma _0},\delta ),{\kern 1pt} {\kern 1pt} {y_ - }(0) = \langle {\varsigma _0}\rangle , where c(ς0, δ) is the constant in (45). Then it follows from the comparison principle that, as long as this makes sense y(t)ςN(t)y+(t). {y_ - }(t) \le \langle {\varsigma _N}(t)\rangle \le {y_ + }(t). Indeed, we have that dςNdt+g(ςN)=ζN20, \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + g(\langle {\varsigma _N}\rangle ) = - \langle \zeta _N^2\rangle \le 0, so, 〈ςN (t)〉 ≤ y+(t), also ζN2c(ς0,δ), \langle \zeta _N^2\rangle \le c({\varsigma _0},\delta ), hence dςNdt+η(ςN)c(ς0,δ), \frac{{d\langle {\varsigma _N}\rangle }}{{dt}} + \eta (\langle {\varsigma _N}\rangle ) \ge - c({\varsigma _0},\delta ), so 〈ςN (t)) ≥ y(t).

In particular, it follows that (at least) a local in times solution exists on some [0, T ], where T > 0 is independent of N. Note also that y+(t)=y2cy1etc01cetc0, {y_ + }(t) = \frac{{{y_2} - c{y_1}{e^{\frac{t}{{{c_0}}}}}}}{{1 - c{e^{\frac{t}{{{c_0}}}}}}}, with y1=p+p2+4p2,y2=pp2+4p2 \begin{array}{*{20}{c}}{{y_1} = \frac{{p + \sqrt {{p^2} + 4p} }}{2},}\\{{y_2} = \frac{{p - \sqrt {{p^2} + 4p} }}{2}}\end{array} and c=y2ς0y1ς0. c = \frac{{{y_2} - \langle {\varsigma _0}\rangle }}{{{y_1} - \langle {\varsigma _0}\rangle }}. y+(t) is the solution of the ODE: y′ + η(y) = 0, so y′ + y2p(1 − y) = 0, so dydt=p+pyy2dyp+pyy2=dt. \begin{array}{*{20}{c}}{\frac{{dy}}{{dt}}}&{ = p + py - {y^2}}&{}&{}\\{\int \frac{{dy}}{{p + py - {y^2}}}}&{ = \int dt.}&{}&{}\end{array} We have p+pyy2=0:Δ=p24(p)(1)=p2+4p, \begin{array}{*{20}{c}}{p + py - {y^2} = 0:}\\{\Delta = {p^2} - 4(p)( - 1) = {p^2} + 4p,}\end{array} hence the roots of the quadratic equation are y1=pp2+4p2=y1=p+p2+4p2,y2=p+p2+4p2=y2=pp2+4p2, \begin{array}{*{20}{c}}{{y_1} = \frac{{ - p - \sqrt {{p^2} + 4p} }}{{ - 2}} = {y_1} = \frac{{p + \sqrt {{p^2} + 4p} }}{2},}\\{{y_2} = \frac{{ - p + \sqrt {{p^2} + 4p} }}{{ - 2}} = {y_2} = \frac{{p - \sqrt {{p^2} + 4p} }}{2},}\end{array} so dy(yy1)(yy2)=t+c,1(yy1)(yy2)=Ayy1+Byy2. \begin{array}{*{20}{c}}{\int \frac{{ - dy}}{{(y - {y_1})(y - {y_2})}} = t + c,}\\{\frac{1}{{(y - {y_1})(y - {y_2})}} = \frac{A}{{y - {y_1}}} + \frac{B}{{y - {y_2}}}.}\end{array} Where A=limyy11yy2=1y1y2=1p2+4p=c0,B=limyy21yy1=1y2y1=1p2+4p=c0. \begin{array}{*{20}{c}}{A = \mathop {\lim }\limits_{y \to {y_1}} \frac{1}{{y - {y_2}}} = \frac{1}{{{y_1} - {y_2}}} = \frac{1}{{\sqrt {{p^2} + 4p} }} = {c_0},}\\{B = \mathop {\lim }\limits_{y \to {y_2}} \frac{1}{{y - {y_1}}} = \frac{1}{{{y_2} - {y_1}}} = \frac{{ - 1}}{{\sqrt {{p^2} + 4p} }} = - {c_0}.}\end{array} We infer c0yy1+c0yy2dt=t+c,c0ln|yy2|ln|yy1|=t+lnc,c0ln|yy2yy1|=t+lnc,ln|yy2yy1|c0=t+lnc,yy2yy1c0=cet,yy2yy1=cetc0,yy2=cetc0(yy1),y1cetc0=y2cy1etc0,y=y2cy1etc01cetc0. \begin{array}{*{20}{c}}{\int \left( {\frac{{ - {c_0}}}{{y - {y_1}}} + \frac{{{c_0}}}{{y - {y_2}}}} \right)dt = t + c,}\\{{c_0}\left( {\ln |y - {y_2}| - \ln |y - {y_1}|} \right) = t + \ln c,}\\{{c_0}\ln |\frac{{y - {y_2}}}{{y - {y_1}}}| = t + \ln c,}\\{\ln |\frac{{y - {y_2}}}{{y - {y_1}}}{|^{{c_0}}} = t + \ln c,}\\{{{\left( {\frac{{y - {y_2}}}{{y - {y_1}}}} \right)}^{{c_0}}} = c{e^t},}\\{\frac{{y - {y_2}}}{{y - {y_1}}} = c{e^{\frac{t}{{{c_0}}}}},}\\{y - {y_2} = c{e^{\frac{t}{{{c_0}}}}}(y - {y_1}),}\\{y\left( {1 - c{e^{\frac{t}{{{c_0}}}}}} \right) = {y_2} - c{y_1}{e^{\frac{t}{{{c_0}}}}},}\\{y = \frac{{{y_2} - c{y_1}{e^{\frac{t}{{{c_0}}}}}}}{{1 - c{e^{\frac{t}{{{c_0}}}}}}}.}\end{array} But y|t=0 = 〈ς0〉, so ς0=y2cy11c,y2cy1=ς01c,y2ς0=cy1ς0,c=y2ς0y1ς0. \begin{array}{*{20}{c}}{\langle {\varsigma _0}\rangle = \frac{{{y_2} - c{y_1}}}{{1 - c}},}\\{{y_2} - c{y_1} = \langle {\varsigma _0}\rangle \left( {1 - c} \right),}\\{{y_2} - \langle {\varsigma _0}\rangle = c\left( {{y_1} - \langle {\varsigma _0}\rangle } \right),}\\{c = \frac{{{y_2} - \langle {\varsigma _0}\rangle }}{{{y_1} - \langle {\varsigma _0}\rangle }}.}\end{array} We assume from now on that t ∈ [0, T ], where T is as above, we again multiply (30) by ζN and we have 12ddt||ζN||12+||ζN||2+[fN(ςN),ζN]cΩζN4+ςN2ζN2dx+c, \frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + ||\nabla {\zeta _N}|{|^2} + \;[{f_N}({\varsigma _N}),{\zeta _N}] \le c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime}, since by (33) 12ddt||ζN||12+||ζN||2+[fN(ςN)¯,ζN]=[η(ςN)¯,Δ1ζN]cΩζN4+ςN2ζN2dx+c. \begin{array}{*{20}{c}}{\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + ||\nabla {\zeta _N}|{|^2} + [\overline {{f_N}({\varsigma _N})} ,{\zeta _N}]}&{ = - [\overline {\eta ({\varsigma _N})} , - {\Delta ^{ - 1}}{\zeta _N}]}&{}&{}\\{}&{ \le c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime}.}&{}&{}\end{array} Which yields, employing (18) with s = ζN and m = 〈ςN〉, ddt||ζN||12+cδ||fN(ςN)||L1(Ω)+ΩFN(ςN)dxcΩζN4+ςN2ζN2dx+cδ,cδ>0. \frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + {c_\delta }\left( {||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right) \le {c^\prime}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + c_\delta ^{''},{\kern 1pt} {\kern 1pt} {c_{\delta > 0}}. In fact, we know from (18) that fN(ςN)ζNcδFN(ςN)+|f1,N(ςN)|cδΩfN(ςN)ζNdxcδΩFN(ςN)dx+Ω|f1,N(ςN)|dxcδ, \begin{array}{*{20}{l}}{{f_N}({\varsigma _N}){\zeta _N}}&{ \ge {c_\delta }\left( {{F_N}({\varsigma _N}) + |{f_{1,N}}({\varsigma _N})|} \right) - c_\delta ^\prime}&{}&{}&{}\\{\int_\Omega {f_N}({\varsigma _N}){\zeta _N}dx}&{ \ge {c_\delta }\left( {\int_\Omega {F_N}({\varsigma _N})dx + \int_\Omega |{f_{1,N}}({\varsigma _N})|dx} \right) - c_\delta ^\prime,}&{}&{}&{}\end{array} 12ddt||ζN||12+cδ||f1,1(ςN)||L1(Ω)+ΩFN(ςN)dxcδcΩζN4+ςN2ζN2dx+c, \begin{array}{*{20}{c}}{\frac{1}{2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + {c_\delta }\left( {||{f_{1,1}}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right) - c_\delta ^\prime}\\{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \le c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime},}\end{array} but f1(ςN) = fN (ςN) + λςN. We then infer that ddt||ζN||12+cδ||fN(ςN)||L1(Ω)+ΩFN(ςN)dxcΩζN4+ςN2ζN2dx+cδ,cδ>0. \frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + {c_\delta }\left( {||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right) \le {c^\prime}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + c_\delta ^{''},{\kern 1pt} {\kern 1pt} {c_{\delta > 0}}. Summing (41) and γ2× (50), where γ2 > 0 is small enough and independent of N and δ, we obtain a differential inequality of the form dE1,Ndt+cδE1,N+||ζN||H2(Ω)2+ΩζN4+ςN2ζN2dx+||fN(ςN)||L1(Ω)+ΩFN(ςN)dxcδ,cδ>0, \begin{array}{*{20}{c}}{\frac{{d{E_{1,N}}}}{{dt}} + {c_\delta }\left( {{E_{1,N}} + ||{\zeta _N}||_{{H^2}(\Omega )}^2} \right) + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + ||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}}\\{ + \int_\Omega {F_N}({\varsigma _N})dx \le c_\delta ^\prime,{\kern 1pt} {\kern 1pt} {c_\delta } > 0,}\end{array} where E1,N=(1+γ2)||ζN||12+γ1||ζN||2 {E_{1,N}} = (1 + {\gamma _2})||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2} .

In fact, (41)+γ2(50) give ddt||ζN||12+γ1||ζN||2+c||ζN||H2(Ω)2+ΩζN4+ςN2ζN2dx+γ2ddt||ζN||12+γ2cδ||fN(ςN)||L1(Ω)+ΩFN(ςN)dxc+γ2cΩζN4+ςN2ζN2dx+γ2cδ,cδ>0. \begin{array}{*{20}{c}}{\frac{d}{{dt}}\left( {||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}} \right) + c\left( {||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right)}\\{ + {\gamma _2}\frac{d}{{dt}}||{\zeta _N}||_{ - 1}^2 + {\gamma _2}{c_\delta }\left( {||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right)}\\{ \le {c^\prime} + {\gamma _2}{c^\prime}\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {\gamma _2}c_\delta ^{''},{\kern 1pt} {\kern 1pt} {c_\delta } > 0.}\end{array} Hence, dE1,Ndt+cδ||ζN||H2(Ω)2+ΩζN4+ςN2ζN2dx+||fN(ςN)||L1(Ω)+ΩFN(ςN)dxcδ,cδ>0, \begin{array}{*{20}{c}}{\frac{{d{E_{1,N}}}}{{dt}} + {c_\delta }\left( {||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + ||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right)}\\{ \le c_\delta ^\prime,\;\;\;\;\;\;\;{c_\delta } > 0,}\end{array} but E1,N=(1+γ2)||ζN||12+γ1||ζN||2(1+γ2)k||ζN||H2(Ω)2+γ1k||ζN||H2(Ω)2, \begin{array}{*{20}{l}}{{E_{1,N}}}&{ = (1 + {\gamma _2})||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2}}&{}&{}\\{}&{ \le (1 + {\gamma _2})k||{\zeta _N}||_{{H^2}(\Omega )}^2 + {\gamma _1}{k^\prime}||{\zeta _N}||_{{H^2}(\Omega )}^2,}&{}&{}\end{array} so, E1,Nk||ζN||H2(Ω)2, {E_{1,N}} \le k||{\zeta _N}||_{{H^2}(\Omega )}^2, then dE1,Ndt+cδE1,N+||ζN||H2(Ω)2+ΩζN4+ςN2ζN2dx+||fN(ςN)||L1(Ω)+ΩFN(ςN)dxcδ,cδ>0. \begin{array}{*{20}{c}}{\frac{{d{E_{1,N}}}}{{dt}} + {c_\delta }\left( {{E_{1,N}} + ||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right) + ||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}}\\{ + \int_\Omega {F_N}({\varsigma _N})dx \le c_\delta ^\prime,{\kern 1pt} {\kern 1pt} {c_\delta } > 0.}\end{array} If we note that |〈ςN〉 ≤ 1, we see that dςN2dt=2ςNζN2ςN2+p(1ςN)c||ζN||2, \frac{{d{{\langle {\varsigma _N}\rangle }^2}}}{{dt}} = 2\langle {\varsigma _N}\rangle \left( { - \langle \zeta _N^2\rangle - {{\langle {\varsigma _N}\rangle }^2} + p(1 - \langle {\varsigma _N}\rangle )} \right) \le c||{\zeta _N}|{|^2}, which results in the following dςN2dt+ςN2c||ζN||2+c, \frac{{d{{\langle {\varsigma _N}\rangle }^2}}}{{dt}} + {\langle {\varsigma _N}\rangle ^2} \le c||{\zeta _N}|{|^2} + {c^\prime}, since dςN2dt=2ςNddtςN=2ςNg(ςN)ζN2=2ςNςN2+p(1ςN)ζN2=2ςN3+2pςN2pςN22ςNζN2c||ζN||2+c, \begin{array}{*{20}{l}}{\frac{{d{{\langle {\varsigma _N}\rangle }^2}}}{{dt}}}&{ = 2\langle {\varsigma _N}\rangle \frac{d}{{dt}}\langle {\varsigma _N}\rangle }&{}&{}\\{}&{ = 2\langle {\varsigma _N}\rangle \left( { - g(\langle {\varsigma _N}\rangle ) - \langle \zeta _N^2\rangle } \right)}&{}&{}\\{}&{ = 2\langle {\varsigma _N}\rangle \left( { - {{\langle {\varsigma _N}\rangle }^2} + p(1 - \langle {\varsigma _N}\rangle ) - \langle \zeta _N^2\rangle } \right)}&{}&{}\\{}&{ = - 2{{\langle {\varsigma _N}\rangle }^3} + 2p\langle {\varsigma _N}\rangle - 2p{{\langle {\varsigma _N}\rangle }^2} - 2\langle {\varsigma _N}\rangle {{\langle {\zeta _N}\rangle }^2}}&{}&{}\\{}&{ \le c||{\zeta _N}|{|^2} + {c^\prime},}&{}&{}\end{array} so dςN2dt+ςN2c||ζN||2+c+1c||ζN||2+c. \begin{array}{*{20}{l}}{\frac{{d{{\langle {\varsigma _N}\rangle }^2}}}{{dt}} + {{\langle {\varsigma _N}\rangle }^2}}&{ \le c||{\zeta _N}|{|^2} + {c^\prime} + 1}&{}&{}\\{}&{ \le c||{\zeta _N}|{|^2} + {c^{''}}.}&{}&{}\end{array} Summing (51) and γ3 × (52), where γ3 > 0 (independent of N) is small enough, we get dE2,Ndt+cδE2,N+||ςN||H2(Ω)2+ΩζN4+ςN2ζN2dx+||fN(ςN)||L1(Ω)+ΩFN(ςN)dxcδ,cδ>0, \begin{array}{*{20}{c}}{\frac{{d{E_{2,N}}}}{{dt}} + {c_\delta }\left( {{E_{2,N}} + ||{\varsigma _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right) + ||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}}\\{ + \int_\Omega {F_N}({\varsigma _N})dx \le c_\delta ^\prime,{\kern 1pt} {\kern 1pt} {c_\delta } > 0,}\end{array} where E2,N=E1,N+γ3ςN2, {E_{2,N}} = {E_{1,N}} + {\gamma _3}{\langle {\varsigma _N}\rangle ^2}, since (51) +γ3 (52) give ddtE1,N+cδE1,N+||ζN||H2(Ω)2+ΩζN4+ςN2ζN2dx+||fN(ςN)||L1(Ω)+ΩFN(ςN)dx+γ3ddtςN2+γ3ςN2cδ+cγ3||ζN||2+γ3c, \begin{array}{*{20}{c}}{\frac{d}{{dt}}{E_{1,N}} + {c_\delta }\left( {{E_{1,N}} + ||{\zeta _N}||_{{H^2}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + ||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}} + \int_\Omega {F_N}({\varsigma _N})dx} \right)}\\{ + {\gamma _3}\frac{d}{{dt}}{{\langle {\varsigma _N}\rangle }^2} + {\gamma ^3}{{\langle {\varsigma _N}\rangle }^2}}\\{ \le c_\delta ^\prime + c{\gamma _3}||{\zeta _N}|{|^2} + {\gamma _3}{c^\prime},}\end{array} but ||ζN||2=ΩζN2dxcΩζN4dx, ||{\zeta _N}|{|^2} = \int_\Omega \zeta _N^2dx \le c\int_\Omega \zeta _N^4dx, so we get (53).

E2,N satisfies c||ςN||2E2,Nc||ςN||2,c,c>0. c||{\varsigma _N}|{|^2} \le {E_{2,N}} \le {c^\prime}||{\varsigma _N}|{|^2},{\kern 1pt} {\kern 1pt} c,{c^\prime} > 0. Indeed, we have E2,N=E1,N+γ3ςN2=(1+γ2)||ζN||12+γ1||ζN||2+γ3ςN2, \begin{array}{*{20}{l}}{{E_{2,N}}}&{ = {E_{1,N}} + {\gamma _3}{{\langle {\varsigma _N}\rangle }^2}}&{}&{}\\{}&{ = (1 + {\gamma _2})||{\zeta _N}||_{ - 1}^2 + {\gamma _1}||{\zeta _N}|{|^2} + {\gamma _3}{{\langle {\varsigma _N}\rangle }^2},}&{}&{}\end{array} but ||ζN||−1 ∼ ||ζN||L2(Ω), since 〈ζN〉 = 0, so ∃c1, c2 > 0, such that c1||ζN||L2(Ω)2||ζN||12c2||ζN||L2(Ω)2.γ3ςN2+(1+γ2)c1||ζN||L2(Ω)2+γ1||ζN||2E2,N(1+γ2)c2||ζN||L2(Ω)2+γ1||ζN||2+γ3ςN2c3||ζN||L2(Ω)2+ςN2E2,Nc4||ζN||L2(Ω)2+ςN2, \begin{array}{*{20}{c}}{{c_1}||{\zeta _N}||_{{L^2}(\Omega )}^2 \le ||{\zeta _N}||_{ - 1}^2 \le {c_2}||{\zeta _N}||_{{L^2}(\Omega )}^2.}\\{{\gamma _3}{{\langle {\varsigma _N}\rangle }^2} + (1 + {\gamma _2}){c_1}||{\zeta _N}||_{{L^2}(\Omega )}^2 + {\gamma _1}||{\zeta _N}|{|^2} \le {E_{2,N}}}\\{ \le (1 + {\gamma _2}){c_2}||{\zeta _N}||_{{L^2}(\Omega )}^2 + {\gamma _1}||{\zeta _N}|{|^2} + {\gamma _3}{{\langle {\varsigma _N}\rangle }^2}}\\{{c_3}\left( {||{\zeta _N}||_{{L^2}(\Omega )}^2 + {{\langle {\varsigma _N}\rangle }^2}} \right) \le {E_{2,N}} \le {c_4}\left( {||{\zeta _N}||_{{L^2}(\Omega )}^2 + {{\langle {\varsigma _N}\rangle }^2}} \right),}\end{array} then c||ςN||2E2,Nc||ςN||2. c||{\varsigma _N}|{|^2} \le {E_{2,N}} \le {c^\prime}||{\varsigma _N}|{|^2}. In the next step, we multiply (30) by dςNdt \frac{{d{\varsigma _N}}}{{dt}} , then integrate over Ω and have ||dζNdt||12+12ddt||ςN||2+[fN(ςN),dςNdt]+[ςN2p(1ςN),(Δ)1dςNdt]=0. ||\frac{{d{\zeta _N}}}{{dt}}||_{ - 1}^2 + \frac{1}{2}\frac{d}{{dt}}||\nabla {\varsigma _N}|{|^2} + [{f_N}({\varsigma _N}),\frac{{d{\varsigma _N}}}{{dt}}] + [\varsigma _N^2 - p(1 - {\varsigma _N}),{( - \Delta )^{ - 1}}\frac{{d{\varsigma _N}}}{{dt}}] = 0. Indeed, (30) results in (Δ)1dςNdtΔζN+fN(ςN)¯+(Δ)1η(ςN)¯=0, {( - \Delta )^{ - 1}}\frac{{d{\varsigma _N}}}{{dt}} - \Delta {\zeta _N} + \overline {{f_N}({\varsigma _N})} + {( - \Delta )^{ - 1}}\overline {\eta ({\varsigma _N})} = 0, but ΩΔζNdζNdtdx==12ddtΩζNζNdxΓζNζNνds=12ddt||ζN||2. \begin{array}{*{20}{c}}{\int_\Omega - \Delta {\zeta _N}\frac{{d{\zeta _N}}}{{dt}}dx = }\\{ = \frac{1}{2}\frac{d}{{dt}}\left( {\int_\Omega \nabla {\zeta _N} \cdot \nabla {\zeta _N}{\kern 1pt} dx - \int_\Gamma {\zeta _N}\frac{{\partial {\zeta _N}}}{{\partial \nu }}ds} \right)}\\{ = \frac{1}{2}\frac{d}{{dt}}||\nabla {\zeta _N}|{|^2}.}\end{array} Furthermore [fN(ςN),ζNt]=[fN(ςN),ςNt][fN(ςN),ςNt]=ddtΩFN(ςN)dx+[fN(ςN),ζN2+ςN2p(1ςN)]=ddtΩFN(ςN)dx+Vol(Ω)fN(ςN)[ζN2+ςN2p(1ςN)]||fN(ςN)||L1(Ω)||ζN||L2(Ω)2+1. \begin{array}{*{20}{l}}{[{f_N}({\varsigma _N}),\frac{{\partial {\zeta _N}}}{{\partial t}}]}&{ = [{f_N}({\varsigma _N}),\frac{{\partial {\varsigma _N}}}{{\partial t}}] - [{f_N}({\varsigma _N}),\frac{{\partial \langle {\varsigma _N}\rangle }}{{\partial t}}]}\\{}&{ = \frac{d}{{dt}}\int_\Omega {F_N}({\varsigma _N})dx + [{f_N}({\varsigma _N}),{{\langle {\zeta _N}\rangle }^2} + {{\langle {\varsigma _N}\rangle }^2} - p(1 - \langle {\varsigma _N}\rangle )]}\\{}&{ = \frac{d}{{dt}}\int_\Omega {F_N}({\varsigma _N})dx + {\kern 1pt} {\rm{Vol}}{\kern 1pt} (\Omega )\langle {f_N}({\varsigma _N})\rangle [{{\langle {\zeta _N}\rangle }^2} + {{\langle {\varsigma _N}\rangle }^2} - p(1 - \langle {\varsigma _N}\rangle )]}\\{}&{ \le \;||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}\left( {||{\zeta _N}||_{{L^2}(\Omega )}^2 + 1} \right).}\end{array} We also note that |[ςN2p(1ςN),(Δ)1ζNt]|=[ςN2ςN2+p(ςNςN),(Δ)1ζNdt]12||ζNt||12+cΩζN4+ςN2ζN2dx+c. \begin{array}{*{20}{l}}{|[\varsigma _N^2 - p(1 - {\varsigma _N}),{{( - \Delta )}^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}}]|}&{ = [\varsigma _N^2 - \langle \varsigma _N^2\rangle + p({\varsigma _N} - \langle {\varsigma _N}\rangle ),{{( - \Delta )}^{ - 1}}\frac{{\partial {\zeta _N}}}{{dt}}]}&{}&{}\\{}&{ \le \frac{1}{2}||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime}.}&{}&{}\end{array} It follows from (54)(56) that ddt||ζN||2+2ΩFN(ςN)dx+||ζNt||12c||fN(ςN)||L1(Ω)||ζN||2+1+ΩζN4+ςN2ζN2dx. \begin{array}{*{20}{c}}{\frac{d}{{dt}}\left( {||\nabla {\zeta _N}|{|^2} + 2\int_\Omega {F_N}({\varsigma _N})dx} \right) + ||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2}\\{ \le c\left( {||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}\left( {||{\zeta _N}|{|^2} + 1} \right) + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right).}\end{array} By (54) ||ζNt||12+12ddt||ζN||2=[fN(ςN),ζNt][ςN2p(1ςN),(Δ)1ςNt]ddtΩFN(ςN)dx+c||fN(ςN)||L1(Ω)||ζN||2+1+12||ζNt||12+cΩζN4+ςN2ζN2dx, \begin{array}{*{20}{c}}{||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + \frac{1}{2}\frac{d}{{dt}}||\nabla {\zeta _N}|{|^2} = - [{f_N}({\varsigma _N}),\frac{{\partial {\zeta _N}}}{{\partial t}}] - [\varsigma _N^2 - p(1 - {\varsigma _N}),{{( - \Delta )}^{ - 1}}\frac{{\partial {\varsigma _N}}}{{\partial t}}]}\\{ \le - \frac{d}{{dt}}\int_\Omega {F_N}({\varsigma _N})dx + c||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}\left( {||{\zeta _N}|{|^2} + 1} \right) + \frac{1}{2}||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx,}\end{array} then 12||ζNt||12+12ddt||ζN||2+ddtΩFN(ςN)dxc||fN(ςN)||L1(Ω)||ζN||2+1+ΩζN4+ςN2ζN2dx, \begin{array}{*{20}{c}}{\frac{1}{2}||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + \frac{1}{2}\frac{d}{{dt}}||\nabla {\zeta _N}|{|^2} + \frac{d}{{dt}}\int_\Omega {F_N}({\varsigma _N})dx}\\{ \le c\left( {||{f_N}({\varsigma _N})|{|_{{L^1}(\Omega )}}\left( {||{\zeta _N}|{|^2} + 1} \right) + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx} \right),}\end{array} and next we multiply by 2 and get (57). It follows from (53) that ςN is bounded in L(0, T ; L2(Ω))∩L2(0, T ; H2(Ω)), and ΩζN4+ςN2ζN2dx \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx is bounded in L1(0, T) which implies that ςN is bounded in L4((0, T) × Ω) and fN (ςN) is bounded in L1((0, T) × Ω) independently of N. It therefore follows from (57) that ςN is also bounded in L(0, T ; H1(Ω)) and ςNt \frac{{\partial {\varsigma _N}}}{{\partial t}} is bounded in L2(0, T ; H−1(Ω)) independently of N (note that FN is bounded on [−1, 1], independently of N).

We finally multiply (30) by fN(ςN)¯ \overline {{f_N}({\varsigma _N})} and integrate over Ω and have ||fN(ςN)¯||2[ΔζN,fN(ςN)¯]+[(Δ)1ζNt,fN(ςN)¯]+[(Δ)1η(ςN)¯,fN(ςN)¯]=0, ||\overline {{f_N}({\varsigma _N})} |{|^2} - [\Delta {\zeta _N},\overline {{f_N}({\varsigma _N})} ] + [{( - \Delta )^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}},\overline {{f_N}({\varsigma _N})} ] + [{( - \Delta )^{ - 1}}\overline {\eta ({\varsigma _N})} ,\overline {{f_N}({\varsigma _N})} ] = 0, noting that [ΔζN,fN(ςN)¯]=[ΔζN,fN(ςN)]=[fN(ςN)ςN,ςN]λ1||ςN||2. \begin{array}{*{20}{l}}{[\Delta {\zeta _N},\overline {{f_N}({\varsigma _N})} ]}&{ = [\Delta {\zeta _N},{f_N}({\varsigma _N})]}&{}&{}\\{}&{ = - [f_N^\prime({\varsigma _N})\nabla {\varsigma _N},\nabla {\varsigma _N}]}&{}&{}\\{}&{ \le {\lambda _1}||\nabla {\varsigma _N}|{|^2}.}&{}&{}\end{array} Indeed, we have that [ΔζN,fN(ςN)¯]=[ΔζN,fN(ςN)fN(ςN)]=[ΔζN,fN(ςN)]=ΩΔςNfN(ςN)dx=ΩςNfN(ςN)dx=ΩςN(ςN)fN(ςN)dxλ1||ςN||2. \begin{array}{*{20}{l}}{[\Delta {\zeta _N},\overline {{f_N}({\varsigma _N})} ]}&{ = [\Delta {\zeta _N},{f_N}({\varsigma _N}) - \langle {f_N}({\varsigma _N})\rangle ]}&{}&{}\\{}&{ = [\Delta {\zeta _N},{f_N}({\varsigma _N})]}&{}&{}\\{}&{ = \int_\Omega \Delta {\varsigma _N}{f_N}({\varsigma _N}){\kern 1pt} dx}&{}&{}\\{}&{ = - \int_\Omega \nabla {\varsigma _N} \cdot \nabla {f_N}({\varsigma _N})dx}&{}&{}\\{}&{ = - \int_\Omega \nabla {\varsigma _N} \cdot \nabla ({\varsigma _N})f_N^\prime({\varsigma _N})dx}&{}&{}\\{}&{ \le {\lambda _1}||\nabla {\varsigma _N}|{|^2}.}&{}&{}\end{array} Proceeding as above, we get the inequality ||fN(ςN)¯||2c||ςN||H1(Ω)2+ΩζN4+ςN2ζN2dx+||ζNt||12. ||\overline {{f_N}({\varsigma _N})} |{|^2} \le c\left( {||{\varsigma _N}||_{{H^1}(\Omega )}^2 + \int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + ||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2} \right). Indeed, we have that |[Δ1ζNt,fN(ςN)¯]|||Δ1ζNt||||fN(ςN)¯||ε2||ζNt||12+12ε||fN(ςN)¯||2|[Δ1η(ςN)¯,fN(ςN)¯]|Δ1η(ςN)¯||fN(ςN)¯||ε2||Δ1η(ςN)¯||2+12ε||fN(ςN)¯||2c||η(ςN)¯||2+||fN(ςN)¯||2cΩζN4+ςN2ζN2dx+c+12ε||fN(ςN)¯||2. \begin{array}{*{20}{l}}{|[ - {\Delta ^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}},\overline {{f_N}({\varsigma _N})} ]|}&{ \le || - {\Delta ^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}}||{\kern 1pt} ||\overline {{f_N}({\varsigma _N})} ||}&{}&{}\\{}&{ \le \frac{\varepsilon }{2}||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + \frac{1}{{2\varepsilon }}||\overline {{f_N}({\varsigma _N})} |{|^2} - |[ - {\Delta ^{ - 1}}\overline {\eta ({\varsigma _N})} ,\overline {{f_N}({\varsigma _N})} ]|}&{}&{}\\{}&{ \le \parallel - {\Delta ^{ - 1}}\overline {\eta ({\varsigma _N})} \parallel {\kern 1pt} ||\overline {{f_N}({\varsigma _N})} ||}&{}&{}\\{}&{ \le \frac{\varepsilon }{2}|| - {\Delta ^{ - 1}}\overline {\eta ({\varsigma _N})} |{|^2} + \frac{1}{{2\varepsilon }}||\overline {{f_N}({\varsigma _N})} |{|^2}}&{}&{}\\{}&{ \le c||\overline {\eta ({\varsigma _N})} |{|^2} + ||\overline {{f_N}({\varsigma _N})} |{|^2}}&{}&{}\\{}&{ \le c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime} + \frac{1}{{2\varepsilon }}||\overline {{f_N}({\varsigma _N})} |{|^2}.}&{}&{}\end{array} Therefore ||fN(ςN)¯||2=[ΔζN,fN(ςN)¯][(Δ)1ζNt,fN(ςN)¯]λ1||ςN||2+ε2||ζNt||12+12ε||fN(ςN)¯||2+cΩζN4+ςN2ζN2dx+c+12ε||fN(ςN)¯||2, \begin{array}{*{20}{c}}{||\overline {{f_N}({\varsigma _N})} |{|^2} = [\Delta {\zeta _N},\overline {{f_N}({\varsigma _N})} ] - [{{( - \Delta )}^{ - 1}}\frac{{\partial {\zeta _N}}}{{\partial t}},\overline {{f_N}({\varsigma _N})} ]}\\{ \le {\lambda _1}||\nabla {\varsigma _N}|{|^2} + \frac{\varepsilon }{2}||\frac{{\partial {\zeta _N}}}{{\partial t}}||_{ - 1}^2 + \frac{1}{{2\varepsilon }}||\overline {{f_N}({\varsigma _N})} |{|^2} + c\int_\Omega \left( {\zeta _N^4 + {{\langle {\varsigma _N}\rangle }^2}\zeta _N^2} \right)dx + {c^\prime} + \frac{1}{{2\varepsilon }}||\overline {{f_N}({\varsigma _N})} |{|^2},}\end{array} and we get (58).

This results in a uniform (with respect to N) estimate for fN(ςN)¯ \overline {{f_N}({\varsigma _N})} in L2((0, T) × Ω). From (18) it follows that |fN(ςN)|cδζN||fN(ςN)¯||+cδ, |\langle {f_N}({\varsigma _N})\rangle | \le {c_\delta }\parallel {\zeta _N}\parallel {\kern 1pt} ||\overline {{f_N}({\varsigma _N})} || + c_\delta ^\prime, we find a uniform (with respect to N) estimate for fN (ςN) in L2((0, T) × Ω).

Besides, owing to (18) with 〈ςN〉 = m and ζN = s, fN(ςN)ςNc6FN(ςN)+|f1,N(ςN)|c7|f1,N(ςN)|1c6fN(ςN)ζNFN(ςN)+c7c6 \begin{array}{*{20}{c}}{{f_N}({\varsigma _N}) - {\varsigma _N} \ge {c_6}\left( {{F_N}({\varsigma _N}) + |{f_{1,N}}({\varsigma _N})|} \right) - {c_7}}\\{|{f_{1,N}}({\varsigma _N})| \le \frac{1}{{{c_6}}}{f_N}({\varsigma _N}){\kern 1pt} {\zeta _N} - {F_N}({\varsigma _N}) + \frac{{{c_7}}}{{{c_6}}}}\end{array} |f1,N(ςN)||f1,N(ςN)|1c61Vol(Ω)ΩfN(ςN)ζNdx1Vol(Ω)ΩFN(ςN)dx+c7c6, \begin{array}{*{20}{l}}{|\langle {f_{1,N}}({\varsigma _N})\rangle |}&{ \le \langle |{f_{1,N}}({\varsigma _N})|\rangle }&{}&{}\\{}&{ \le \frac{1}{{{c_6}}}\frac{1}{{{\kern 1pt} {\rm{Vol}}{\kern 1pt} (\Omega )}}\int_\Omega {f_N}({\varsigma _N}){\zeta _N}dx - \frac{1}{{{\kern 1pt} {\rm{Vol}}{\kern 1pt} (\Omega )}}\int_\Omega {F_N}({\varsigma _N})dx + \frac{{{c_7}}}{{{c_6}}},}&{}&{}\end{array} but FN (ςN) ≤ c f (ςN)ςN + | f1,N (ςN)| and fN (ςN) = f1,N (ςN) − λ1ςN. |fN(ςN)||f1,N(ςN)|+λ1|ςN||f1,N(ςN)|+c||ςN||L2(Ω)c||ςN||L2(Ω)+||fN(ςN)¯||. \begin{array}{*{20}{l}}{|\langle {f_N}({\varsigma _N})\rangle |}&{ \le \;|\langle {f_{1,N}}({\varsigma _N})\rangle | + {\lambda _1}|\langle {\varsigma _N}\rangle |}&{}&{}\\{}&{ \le \;|\langle {f_{1,N}}({\varsigma _N})\rangle | + c||{\varsigma _N}|{|_{{L^2}(\Omega )}}}&{}&{}\\{}&{ \le c||{\varsigma _N}|{|_{{L^2}(\Omega )}} + ||\overline {{f_N}({\varsigma _N})} ||.}&{}&{}\end{array}

Existence of solutions

We have the following theorems.

Theorem 2

We assume that ς0H1(Ω) is such that |〈ς0〉| < 1 and −1 < ς0(x) < 1 a.e., x ∈ Ω, then there exists T = T (ς0) > 0 and a solution of (7)(9) on [0, T ] such that ςC([0, T ]; H1(Ω)) ∩ L2(0, T ; H2(Ω)) ∩ L4((0, T) × Ω) and ςtL2(0,T;H1(Ω)) \frac{{\partial \varsigma }}{{\partial t}} \in {L^2}(0,T;{H^{ - 1}}(\Omega )) .

Furthermore, −1 < ς(x, t) < 1 a.e. (x, t) ∈ Ω × (0, T).

The proof of this theorem is standard due to the uniform estimates obtained in the previous section.

Theorem 3

Assume that the same assumptions apply as in Theorem 2, then the solution ς is global in time.

Proof

Consider [0, T), such that T > 0 is the maximal time interval in which the solution ς is given in Theorem 2 exists, so that |ς(x,t)|1a.e.(x,t)Ω×[0,T). |\varsigma (x,t)| \le 1{\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{a.e.}}{\kern 1pt} {\kern 1pt} {\kern 1pt} (x,t) \in \Omega \times [0,{T^ * }). Furthermore, 〈ς〉 satisfies dςdt+ς2p(1ς)=0. \frac{{d\langle \varsigma \rangle }}{{dt}} + \langle {\varsigma ^2} - p(1 - \varsigma )\rangle = 0. Using the fact that dςdt+pς=ς21, \frac{{d\langle \varsigma \rangle }}{{dt}} + p\langle \varsigma \rangle = - \langle {\varsigma ^2} - 1\rangle , which yields ς(t)=eptς0ept0tepsς21dx. \langle \varsigma (t)\rangle = {e^{ - pt}}\langle {\varsigma _0}\rangle - {e^{ - pt}}\int_0^t {e^{ps}}\langle {\varsigma ^2} - 1\rangle dx. Noting that |ς21|2, |\langle {\varsigma ^2} - 1\rangle | \le 2, this yields |ς(t)|eptς0+1ept,t[0,T). |\langle \varsigma (t)\rangle | \le {e^{ - pt}}\langle {\varsigma _0}\rangle + 1 - {e^{ - pt}},\;\;\;\;\;t \in [0,{T^ * }). In particular, it follows from last inequality that |ς(x,t)|1,t[0,T). |\varsigma (x,t)| \le 1,\;\;\;\;\;t \in [0,{T^ * }).

Conclusions

In this study, we examined a variation of the Cahn-Hilliard equation featuring a logarithmic nonlinear term and a proliferation term given by η(s) = s2p(1 − s). The model, subject to Neumann boundary conditions, captures interactions between liquid and gas, with p denoting the gas pressure. Specifically, the model finds application in understanding the formation of islands. We successfully demonstrated the existence of a solution to the problem. Notably, our challenge stemmed from the singularities in the nonlinear terms. Constructing approximated problems posed difficulty, as we could not rule out the possibility of solutions to these approximated problems experiencing blowup in finite time. Consequently, deriving uniform estimates for the approximated problems in the presence of singularities became a more intricate task.

It is noteworthy that our future work will delve into the exploration of the Cahn-Hilliard equation incorporating a fidelity term of the form λ0χΩ\D(x)(uh). Here, λ0 stands as a suitably large constant, and D represents the inpainting model. The results indicate that inpainting in this scenario is faster and more efficient compared to a model with a regular polynomial nonlinear term.

Declarations
Conflict of interest 

Not applicable.

Funding

Not applicable.

Author’s contribution

H.F.-Data Curation, Conceptualization, Design, Formal analysis, Project administration. M.B.-Data Curation, Conceptualization, Design. H.A.-Writing - Original Draft, Investigation. Y.A.-Writing - Original Draft, Resources. All authors reviewed the results and approved the final version of the manuscript.

Acknowledgement

The authors wish to thank the referees for their careful reading of the article and useful comments.

Data availability statement

All data that support the findings of this study are included within the article.

Using of AI tools

The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.

eISSN:
2956-7068
Idioma:
Inglés
Calendario de la edición:
2 veces al año
Temas de la revista:
Computer Sciences, other, Engineering, Introductions and Overviews, Mathematics, General Mathematics, Physics