Acerca de este artículo
Categoría del artículo: Original Study
Publicado en línea: 10 ene 2024
Páginas: 251 - 262
Recibido: 13 oct 2023
Aceptado: 25 dic 2023
DOI: https://doi.org/10.2478/ijmce-2024-0019
Palabras clave
© 2024 Jon Rokne, published by Sciendo
This work is licensed under the Creative Commons Attribution 4.0 International License.
Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Primality of q + 26, q + 28, q + 32 and q + 34 for general q-center=q_
q-center | ||||
---|---|---|---|---|
195 | NO | YES | YES | YES |
825 | NO | YES | YES | YES |
1485 | YES | NO | NO | NO |
1875 | NO | YES | YES | NO |
2085 | YES | YES | NO | NO |
21015 | NO | NO | NO | NO |
The octuple with o-center= o = 1006320_
type of center | center label | center value | factored center |
---|---|---|---|
d-center | 1006302 | (2,1),(3,1),(11,1),(79,1),(193,1) | |
q-center | 1006305 | (3,1),(5,1),(73,1),(919,1) | |
d-center | 1006308 | (2,2),(3,2),(27953,1) | |
o-center | 1006320 | (2,4),(3,1),(5,1),(7,1),(599,1) | |
d-center | 1006332 | (2,2),(3,1),(17,1),(4933,1) | |
q-center | 1006335 | (3,2),(5,1),(11,1),(19,1),(107,1) | |
d-center | 1006338 | (2,1),(3,1),(179,1),(937,1) |
Primality o − 1 and o + 1 for select cases of octuple primes_
prime |
prime |
|
---|---|---|
1006320 | False | False |
2594970 | False | True |
3919230 | True | False |
9600570 | False | True |
10531080 | False | False |
157131660 | False | True |
179028780 | True | False |
211950270 | True | False |
255352230 | False | False |
267587880 | False | False |
724491390 | True | False |
871411380 | False | False |
Pure and impure octuples up to 1011_
Number of octuple primes | Pure octuple primes | Octuple primes with |
Octuple primes with |
Octuple primes with |
---|---|---|---|---|
267 | 187 | 34 | 47 | 3 |
Pure and impure octuples up to 1010_
Number of octuple primes | Pure octuple primes | Octuple prime with |
Ocuple primes with |
Ocuple primes with |
---|---|---|---|---|
65 | 42 | 9 | 14 | 0 |
Divisors in the neighborhood of the first o-center o of a possible sixtentuple prime_
index | |||||||||
divis | unsp. | 2,3 | unsp. | 2 | 3,5 | 2,7 | unsp. | 2,3 | unsp. |
Divisibility by 3_
index | q+4 | |||||||||||||
divis | 2,3 | 2 | 3 | 2 | P | 2,3 | P | 2 | 3 | 2 | P | 2,3 | P |
Divisibility by 2, 3 and 5 around qprime q_
index | ||||||||||||
divis | 2 | 3 | 2,5 | P | 2,3 | P | 2 | 3,5 | 2 | P | 2,3 | P |
Divisors in the neighborhood of the quadruple prime with qcenter 195, now including 7_
index | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 |
divis | 5 | 2,3 | 2 | 3,7 | 2,5 | P | 2,3 | P | 2 | |
index | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 |
divis | 3,5 | 2,7 | P | 2,3 | P | 2,5 | 3 | 2 | 7 | 2,3 |
index | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 |
divis | 5 | 2 | 3 | 2 | 2,3,5,7 | P | 2 | 3 | 2 | |
index | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 |
divis | 5 | 2,3 | 7 | 2 | 3 | 2,5 | 2,3 | P | 2,7 | |
index | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 |
divis | 3,5 | 2 | P | 2,3 | P | 2,5 | 3,7 | 2 | P | E,3 |
index | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 |
divis | 5 | 2 | 3 | 2,7 | P | 2,3,5 | P | 2 | 3 | 2 |
Divisors in the neighborhood of the second o-center on of a possible sixtentuple prime_
index | |||||||||
divis | unsp. | 2,3 | unsp. | 2,7 | 3,5 | 2 | unsp. | 2,3 | unsp. |
Quadruple prime example_
index | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
divis | E | P | P | E | q-center | E | P | P | E |
Divisors of centers_
centers divisible by | span divisible by | comment | |
---|---|---|---|
dcenter | 1 | 1*2 | verified |
qcenter | 3 | 1*2*3 | verified |
ocenter | 15 | 1*2*3*5 | verified |
scenter | 105 | 1*2*3*5*7 | hypothetical |
Double prime example_
index | |||||||||
divis | E | P | dcenter | P | E | E |