Acceso abierto

Pavement Damage Recognition Based on Deep Learning

 y   
16 jun 2025

Cite
Descargar portada

Figure 1.

Road surface damage dataset under different conditions
Road surface damage dataset under different conditions

Figure 2.

RT-DETR-r18 model structure
RT-DETR-r18 model structure

Figure 3.

Improved RT-DETR model structure
Improved RT-DETR model structure

Figure 4.

Diagrams of different types of cracks
Diagrams of different types of cracks

Figure 5.

Structure of LMBA module
Structure of LMBA module

Figure 7.

Structure of EFKM module
Structure of EFKM module

Figure 6.

Comparison of feature Pyramid net
Comparison of feature Pyramid net

Figure 8.

Comparison chart of mAP during training
Comparison chart of mAP during training

Figure 9.

Average precision of each label in RT-DETR
Average precision of each label in RT-DETR

Figure 10.

Average precision of each label in Improved RT-DETR
Average precision of each label in Improved RT-DETR

Figure 11.

Visual comparison of test results
Visual comparison of test results

COMPARISON BEFORE AND AFTER IMPROVEMENT

Algorithm Pars/M FLOPS/G FPS/s/f mAP/%
RT-DETR 19.8 57.3 69 67.1
Yolov11m 20.1 68.0 107 67.9
Fast-RCNN 136.5 370.2 21 50.2
Improved RT-DETR 14.6 45.2 60 69.2

EXPERIMENTAL ENVIRONMENT

Experimental environment Version
CPU Intel Xeon Platinum 8352V
GPU NVIDIA GeForce RTX4090D
Language Python3.9
Deep Learning Framework Pytorch1.13.1
CUDA 11.6.0

DISEASE CATEGORY

Category Train Set Test Set
D00(Longitudinal cracks) 7419 876
D10(Transverse cracks) 5702 636
D20(Alligator cracks) 6244 689
D40(Potholes) 2316 248
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Informática, Informática, otros