Acerca de este artículo
Publicado en línea: 16 jun 2025
Páginas: 74 - 84
DOI: https://doi.org/10.2478/ijanmc-2025-0018
Palabras clave
© 2025 Mingbo Ning et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 7.

Figure 6.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

COMPARISON BEFORE AND AFTER IMPROVEMENT
Algorithm | Pars/M | FLOPS/G | FPS/s/f | mAP/% |
---|---|---|---|---|
RT-DETR | 19.8 | 57.3 | 69 | 67.1 |
Yolov11m | 20.1 | 68.0 | 107 | 67.9 |
Fast-RCNN | 136.5 | 370.2 | 21 | 50.2 |
Improved RT-DETR | 14.6 | 45.2 | 60 | 69.2 |
EXPERIMENTAL ENVIRONMENT
Experimental environment | Version |
---|---|
CPU | Intel Xeon Platinum 8352V |
GPU | NVIDIA GeForce RTX4090D |
Language | Python3.9 |
Deep Learning Framework | Pytorch1.13.1 |
CUDA | 11.6.0 |
DISEASE CATEGORY
Category | Train Set | Test Set |
---|---|---|
D00(Longitudinal cracks) | 7419 | 876 |
D10(Transverse cracks) | 5702 | 636 |
D20(Alligator cracks) | 6244 | 689 |
D40(Potholes) | 2316 | 248 |